Optics and Spectroscopy

, Volume 89, Issue 2, pp 261–267 | Cite as

Microscopic theory of a transition layer on the ideal surface of semiinfinite dielectric media and the near-field effect

  • O. N. Gadomskiĭ
  • S. V. Sukhov
Physical and Quantum Optics


The microscopic theory of a transitional layer on the ideal surface of a semi-infinite absorbing or nonabsorbing isotropic dielectric is developed within the framework of classical optics when the polarization vector of the medium is a linear function of the electric field strength inside the medium. The concentration of atoms (molecules) of the medium and their polarizability are independent of coordinates and are constant inside the medium and close to its surface. The consideration is carried out within the framework of the concept of a discrete-continuous dielectric, in which the fields of dipoles of discretely distributed atoms (molecules) inside the Lorentz sphere surrounding the observation point are taken into account. The near-field effect is shown to result in a nonexponential behavior of the field nearby the surface. The thickness of the transitional layer can be found from experimental values of the reflected wave amplitude.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lord Rayleigh, Philos. Mag. 16, 1 (1892).Google Scholar
  2. 2.
    Lord Rayleigh, Philos. Mag. 33, 444 (1908).Google Scholar
  3. 3.
    K. E. F. Schmidt, Ann. Phys. (Leipzig) 52, 75 (1894).ADSGoogle Scholar
  4. 4.
    O. Lummer, Ann. Phys. (Leipzig) 31, 325 (1910).Google Scholar
  5. 5.
    C. V. Raman and J. A. Ramdas, Philos. Mag. 3, 220 (1927).Google Scholar
  6. 6.
    C. V. Raman and J. A. Ramdas, Proc. R. Soc. London, Ser. A 109, 252 (1925).ADSGoogle Scholar
  7. 7.
    V. A. Kizel’, Zh. Éksp. Teor. Fiz. 29, 659 (1955) [Sov. Phys. JETP 2, 533 (1956)].Google Scholar
  8. 8.
    V. A. Kizel’, Light Reflection (Nauka, Moscow, 1973).Google Scholar
  9. 9.
    G. V. Rozenberg, Optics of Thin-Layer Coatings (Fizmatgiz, Moscow, 1958).Google Scholar
  10. 10.
    P. Drude, Wied. Ann. 51, 77 (1894).Google Scholar
  11. 11.
    P. K. L. Drude, Theory of Optics (Longmans, London, 1902; ONTI, Moscow, 1935).Google Scholar
  12. 12.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 18, 976 (1948).Google Scholar
  13. 13.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 21, 367 (1951).Google Scholar
  14. 14.
    D. V. Sivukhin, Zh. Éksp. Teor. Fiz. 30, 376 (1956) [Sov. Phys. JETP 3, 269 (1956)].Google Scholar
  15. 15.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1969; Nauka, Moscow, 1973).Google Scholar
  16. 16.
    O. N. Gadomskiĭ and K. V. Krutitskiĭ, Zh. Éksp. Teor. Fiz. 106, 936 (1994) [JETP 79, 513 (1994)].Google Scholar
  17. 17.
    O. N. Gadomsky and K. V. Krutitsky, J. Opt. Soc. Am. B 13, 1679 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    K. V. Krutitsky and S. V. Suhov, J. Phys. B 30, 5341 (1997).CrossRefADSGoogle Scholar
  19. 19.
    O. N. Gadomskiĭ and S. V. Sukhov, Zh. Prikl. Spektrosk. 65, 236 (1998).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • O. N. Gadomskiĭ
    • 1
  • S. V. Sukhov
    • 2
  1. 1.Ul’yanovsk State UniversityUl’yanovskRussia
  2. 2.Institute of Radio Engineering and Electronics, Ul’yanovsk DivisionRussian Academy of SciencesUl’yanovskRussia

Personalised recommendations