Investigation of the percolation transition in a nonwetting liquid-nanoporous medium system

  • V. D. Borman
  • A. M. Grekhov
  • V. I. Troyan
Solids Structure


The flows of liquid into and out of a nanoporous medium are studied as processes leading to the fluctuation formation and the growth of fractal clusters of filled and empty pores, respectively. The conditions for stable growth of such fluctuations are analyzed as a function of the interfacial energy between the liquid and the porous medium and the surface energy of the liquid. Expressions are obtained for the pressure at which the barrier for fluctuation filling and emptying of the pores vanishes. In general, it is shown for porous media with a pore-size distribution that these processes can be interpreted as a percolation phase transition. The volume and susceptibility of a liquid-porous medium system near the transition points with inflow and outflow of the liquid are calculated. The phenomenon of nonoutflow of a nonwetting liquid from a porous medium and hysteresis of the flow of liquid into and out of a porous medium are explained on the basis of the mechanism considered. The results of an experimental investigation of these processes in the system liquid Wood’s alloy-silochrome 80 and silochrome 120 are presented. The experimental data obtained can be described on the basis of the proposed mechanism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Bogomolov, Phys. Rev. B 51, 17040 (1995).Google Scholar
  2. 2.
    R. Cafiero, G. Caldarelh, and A. Gabrielli, Phys. Rev. E 56, 1291 (1997).CrossRefADSGoogle Scholar
  3. 3.
    M. Mulder, Basic Principles of Membrane Technology (Kluwer, Dordrecht, 1996; Mir, Moscow, 1999).Google Scholar
  4. 4.
    T. Naheiri, K. A. Ludwig, M. Anand, et al., Sep. Sci. Technol. 32, 1589 (1997).Google Scholar
  5. 5.
    M. B. Rao and S. Sircar, J. Membr. Sci. 85, 253 (1993).CrossRefGoogle Scholar
  6. 6.
    Yu. A. Alekseev, V. N. Bogomolov, and T. B. Zhukova, Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 418 (1986).Google Scholar
  7. 7.
    V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov. Phys. Usp. 21, 77 (1978)].MathSciNetGoogle Scholar
  8. 8.
    V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, et al., Kristallografiya 38(3), 111 (1993) [Crystallogr. Rep. 38, 348 (1993)].Google Scholar
  9. 9.
    V. N. Bogomolov, Poverkhnost 9, 136 (1992).Google Scholar
  10. 10.
    J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1990).Google Scholar
  11. 11.
    B. M. Smirnov, Usp. Fiz. Nauk 149, 177 (1986) [Sov. Phys. Usp. 29, 481 (1986)].Google Scholar
  12. 12.
    I. M. Sokolov, Usp. Fiz. Nauk 150, 221 (1986) [Sov. Phys. Usp. 29, 506 (1986)].Google Scholar
  13. 13.
    M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Yu. A. Kumzerov, A. A. Nabereznov, and S. V. Vakhrushev, Phys. Rev. B 52, 4772 (1995).CrossRefADSGoogle Scholar
  15. 15.
    P. G. de Gennes, Usp. Fiz. Nauk 151, 620 (1987).Google Scholar
  16. 16.
    A. Yu. Fadeev and V. A. Eroshenko, Ross. Khim. Zh. 39(6), 93 (1995).Google Scholar
  17. 17.
    V. A. Eroshenko and A. Yu. Fadeev, Zh. Fiz. Khim. 70, 1482 (1996).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1964; Pergamon, New York, 1987).Google Scholar
  19. 19.
    H. Haken, Synergetics: an Introduction (Springer-Verlag, Berlin, 1977; Mir, Moscow, 1979).Google Scholar
  20. 20.
    A. A. Abrikosov, Pis’ma Zh. Éksp. Teor. Fiz. 29, 72 (1979) [JETP Lett. 29, 65 (1979)].Google Scholar
  21. 21.
    Physical and Chemical Aspects of Adsorbents and Catalysts, Ed. by B. G. Linsen (Academic, London, 1970; Mir, Moscow, 1978).Google Scholar
  22. 22.
    B. M. Smirnov, Usp. Fiz. Nauk 152, 133 (1987) [Sov. Phys. Usp. 30, 420 (1987)].Google Scholar
  23. 23.
    V. A. Dzis’ko, A. P. Karnaukhov, and D. V. Tarasov, Phisicochemical Fundamentals of Oxide Catalyst Synthesis (Nauka, Novosibirsk 1978).Google Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Pergamon, New York, 1986).Google Scholar
  25. 25.
    M. I. Ozhovan and K. N. Semenov, Zh. Éksp. Teor. Fiz. 101, 1286 (1992) [Sov. Phys. JETP 75, 696 (1992)].Google Scholar
  26. 26.
    Churl-Young Park and Son-Ki Ihm, AIChE J. 36, 1641 (1990).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. D. Borman
    • 1
  • A. M. Grekhov
    • 1
  • V. I. Troyan
    • 1
  1. 1.Moscow State Engineering Physics InstituteMoscowRussia

Personalised recommendations