Advertisement

Physics of the Solid State

, Volume 42, Issue 8, pp 1465–1470 | Cite as

Local spin configurations of Fe atoms in the Rh1−xFex (x=0.1, 0.2, and 0.3) system with competing exchange interactions

  • V. P. Parfenova
  • N. N. Delyagin
  • A. L. Erzinkyan
  • S. I. Reiman
Magnetism and Ferroelectricity

Abstract

The local spin configurations of Fe atoms in the magnetically ordered alloys Rh1−xFex (x=0.1, 0.2, and 0.3) have been investigated by Mössbauer spectroscopy. The Mössbauer absorption spectra are measured in the range from 5 K to temperatures of the transition to the paramagnetic state. The measurements in magnetic fields with a strength up to 5 T are carried out at a temperature of 4.2 K. Analysis of the magnetic-hyperfinefield distribution functions demonstrates that Fe atoms form discrete sets of collinear spin configurations corresponding to different net moments of the nearest coordination sphere. The spin structure of the alloys is governed by a random distribution of Fe atoms over the lattice sites and the competition between the Fe-Rh ferromagnetic exchange interaction and the antiferromagnetic interaction of the neighboring Fe atoms. No spin frustration and spin “melting” effects characteristic of spin glasses are revealed in the Rh-Fe alloys.

Keywords

Exchange Interaction Coordination Sphere Lattice Site Random Distribution Spin Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Window, G. Longworth, and C. E. Johnson, J. Phys. C: Solid State Phys. 3, 2156 (1970).ADSGoogle Scholar
  2. 2.
    A. P. Murani and B. R. Coles, J. Phys. C: Solid State Phys., Suppl. 3, S159 (1970).ADSGoogle Scholar
  3. 3.
    C. Meyer, F. Hartman-Boutron, and Y. Gros, J. Phys. (Paris) 47, 1395 (1986).Google Scholar
  4. 4.
    G. J. Nieuwenhuys, B. H. Verbeek, and J. A. Mydosh, J. Appl. Phys. 50, 1685 (1979).CrossRefADSGoogle Scholar
  5. 5.
    B. H. Verbeek and J. A. Mydosh, J. Phys. F: Met. Phys. 8, L109 (1978).CrossRefADSGoogle Scholar
  6. 6.
    G. J. Nieuwenhuys, Adv. Phys. 24, 515 (1975).CrossRefADSGoogle Scholar
  7. 7.
    V. P. Parfenova, N. N. Delyagin, A. L. Erzinkyan, and S. I. Reyman, Phys. Status Solidi B 214(1), R1 (1999).Google Scholar
  8. 8.
    N. N. Delyagin, A. L. Erzinkyan, G. M. Gurevich, et al., Fiz. Tverd. Tela (S.-Peterburg) 40, 1650 (1998) [Phys. Solid State 40, 1500 (1998)].Google Scholar
  9. 9.
    C. C. Chao, P. Duwez, and C. C. Tsuei, J. Appl. Phys. 42, 4282 (1971).Google Scholar
  10. 10.
    N. N. Delyagin, G. M. Gurevich, A. L. Erzinkyan, et al., Zh. Éksp. Teor. Fiz. 109, 1451 (1996) [JETP 82, 783 (1996)].Google Scholar
  11. 11.
    A. Clogston, B. Matthias, M. Peter, et al., Phys. Rev. 125, 541 (1962).ADSGoogle Scholar
  12. 12.
    W. W. Saslow and G. Parker, Phys. Rev. Lett. 56, 1074 (1986).CrossRefADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. P. Parfenova
    • 1
  • N. N. Delyagin
    • 1
  • A. L. Erzinkyan
    • 1
  • S. I. Reiman
    • 1
  1. 1.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations