Plasma Physics Reports

, Volume 26, Issue 8, pp 701–709 | Cite as

Mechanism for electric breakdown in a chemically nonequilibrium system and the influence of the chain oxidation reaction in an H2-air mixture on the breakdown threshold

  • I. N. Kosarev
  • A. Yu. Starikovskii
Low-Temperature Plasma

Abstract

A mathematical model is developed and a numerical analysis is performed for an electric breakdown in a hydrogen-air mixture with a low concentration of H2. It is shown that, at sufficiently low pressures p<10−2 atm, a small molecular-hydrogen additive (η=5×10−5–5×10−3) decreases the reduced field of an electric breakdown in air by a factor of more than 2 because of the appearance of an additional detachment process associated with the chain hydrogen-oxidation reaction. Detailed calculations are performed for the mean number density of negative oxygen ions [O2]=103 cm−3 and the hydrogen concentration in air [H2]=0.5, 0.05, and 0.005%. It is found that, for [H2]=0.005%, the breakdown can develop under the action of a geoelectric field of 1.3 V/cm at p≃10−4 atm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Morris, A. A. Viggiano, S. T. Arnold, et al., in Proceedings of 27th International Symposium on Combustion, Boulder, 1998, WIP Abstracts, p. 343.Google Scholar
  2. 2.
    S. M. Starikovskaia, A. Yu. Starikovskii, and D. V. Zatsepin, in Proceedings of 27th International Symposium on Combustion, Colorado, Boulder, 1998, WIP Abstracts, p. 4.Google Scholar
  3. 3.
    S. M. Starikovskaia, A. Yu. Starikovskii, and D. V. Zatsepin, J. Phys. D: Appl. Phys. 31, 1118 (1998).CrossRefADSGoogle Scholar
  4. 4.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Discharges (Nauka, Moscow, 1991).Google Scholar
  5. 5.
    L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Usp. Fiz. Nauk 164, 263 (1994) [Phys. Usp. 37, 247 (1994)].CrossRefGoogle Scholar
  6. 6.
    N. B. Anikin, S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D: Appl. Phys. 31, 826 (1998).CrossRefADSGoogle Scholar
  7. 7.
    D. D. Sentman and E. M. Wescott, Phys. Plasmas 2, 2514 (1995).CrossRefADSGoogle Scholar
  8. 8.
    D. D. Sentman, E. M. Wescott, D. L. Osborne, et al., Geophys. Res. Lett. 22, 1205 (1995).ADSGoogle Scholar
  9. 9.
    E. M. Wescott, D. D. Sentman, D. L. Osborne, et al., Geophys. Res. Lett. 22, 1209 (1995).ADSGoogle Scholar
  10. 10.
    E. M. Wescott, D. D. Sentman, M. J. Heavner, et al., Geophys. Res. Lett. 23, 2153 (1996).ADSGoogle Scholar
  11. 11.
    H. Fukunishi, Y. Takahashi, M. Kubota, et al., Geophys. Res. Lett. 23, 2157 (1996).CrossRefADSGoogle Scholar
  12. 12.
    U. S. Inan, C. Barrington-Leigh, S. Hansen, et al., Geophys. Res. Lett. 24, 583 (1997).CrossRefADSGoogle Scholar
  13. 13.
    A. V. Eletskii and B. M. Smirnov, Inzh.-Fiz. Zh. 62, 661 (1992).Google Scholar
  14. 14.
    D. A. Price, J. Lucas, and J. L. Morussi, J. Phys. D 5, 1249 (1972).ADSGoogle Scholar
  15. 15.
    R. J. Corbin and L. Frommhold, Phys. Rev. A 10, 2273 (1974).CrossRefADSGoogle Scholar
  16. 16.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  17. 17.
    V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1984).Google Scholar
  18. 18.
    N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, et al., Teplofiz. Vys. Temp. 19, 22 (1981).ADSGoogle Scholar
  19. 19.
    I. A. Kossyi, A. Yu. Kostinski, A. A. Matveev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).CrossRefADSGoogle Scholar
  20. 20.
    É. E. Son, Electrons in a Low-Temperature Plasma (Vsesoyuzn. Politekh. Inst., Moscow, 1990).Google Scholar
  21. 21.
    Y. Itikawa, At. Data Nucl. Data Tables 14 (1) (1974).Google Scholar
  22. 22.
    V. E. Gal'tsev et al., Preprint No. 3156, IAE (Kurchatov Institute of Atomic Energy, Moscow, 1979).Google Scholar
  23. 23.
    D. A. Erwin and J. A. Kunc, IEEE Trans. Plasma Sci. 11, 266 (1983).CrossRefADSGoogle Scholar
  24. 24.
    G. J. Schulz, Phys. Rev. 135, A938 (1964).CrossRefGoogle Scholar
  25. 25.
    M. J. W. Boness and G. J. Schulz, Phys. Rev. A 8, 2883 (1973).CrossRefADSGoogle Scholar
  26. 26.
    D. C. Cartwright et al., Phys. Rev. A 16 (3) (1977).Google Scholar
  27. 27.
    Y. Itikawa et al., J. Phys. Chem. Ref. Data 15, 985 (1986).ADSGoogle Scholar
  28. 28.
    D. Spence and P. D. Burrow, J. Phys. B 12, 179 (1979).CrossRefADSGoogle Scholar
  29. 29.
    H. F. Winters, J. Chem. Phys. 44, 1472 (1966).ADSGoogle Scholar
  30. 30.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43 (5) (1965).Google Scholar
  31. 31.
    K. Onda, J. Phys. Soc. Jpn. 54, 4544 (1985).CrossRefADSGoogle Scholar
  32. 32.
    O. A. Gordeev and D. V. Khmara, in Proceedings of IX Conference on Physics of Gas Discharge, Ryazan, 1998, p. 91.Google Scholar
  33. 33.
    R. D. Hake and A. V. Phelps, Phys. Rev. 158, 70 (1967).ADSGoogle Scholar
  34. 34.
    R. Sh. Islamov, I. V. Kochetov, and V. G. Pevgov, Preprint No. 169, FIAN (Lebedev Institute of Physics, USSR Academy of Sciences, Moscow, 1977).Google Scholar
  35. 35.
    Y. Itikawa et al., J. Phys. Chem. Ref. Data 18, 23 (1989).ADSCrossRefGoogle Scholar
  36. 36.
    D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).ADSGoogle Scholar
  37. 37.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).ADSGoogle Scholar
  38. 38.
    D. Rapp, P. Englander-Golden, and D. D. Briglia, J. Chem. Phys. 42, 4081 (1965).CrossRefADSGoogle Scholar
  39. 39.
    D. V. Zatsepin, S. M. Starikovskaya, and A. Yu. Starikovskii, Khim. Fiz. (in press).Google Scholar
  40. 40.
    A. Yu. Kostinskii, Preprint No. 87, IOFAN (Institute of General Physics, USSR Academy of Sciences, Moscow, 1990).Google Scholar
  41. 41.
    C. M. Ferreira et al., IEEE Trans. Plasma Sci. 19, 229 (1991).CrossRefADSGoogle Scholar
  42. 42.
    L. I. Virin, Ion-Molecular Reactions in Gases (Nauka, Moscow, 1979).Google Scholar
  43. 43.
    V. L. Bychkov and V. A. Yurovskii, Teplofiz. Vys. Temp. 31, 8 (1993).Google Scholar
  44. 44.
    Combustion Chemistry, Ed. by W. Gardiner, Jr. (Springer-Verlag, New York, 1984; Mir, Moscow, 1988).Google Scholar
  45. 45.
    W. G. Mallard et al., NIST Chemical Kinetic Database, Ver. 6.0 (1994)Google Scholar
  46. 46.
    T. J. Millar, J. M. C. Rawlings, A. Bennett, et al., Astron. Astrophys., Suppl. Ser. 87, 585 (1991).ADSGoogle Scholar
  47. 47.
    T. J. Millar, P. R. A. Farquhar, and K. Willacy, Astron. Astrophys., Suppl. Ser. 121, 139 (1997).CrossRefADSGoogle Scholar
  48. 48.
    E. F. van Dishoeck, in Rate Coefficients in Astrochemistry, Ed. by T. J. Millar and D. A. Williams (Kluwer, Dordrecht, 1988), p. 49.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • I. N. Kosarev
    • 1
  • A. Yu. Starikovskii
    • 1
  1. 1.Moscow Institute for Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations