Advertisement

Technical Physics Letters

, Volume 23, Issue 12, pp 902–905 | Cite as

Similarities and differences between the effects of orientation of red blood cells in a nematic liquid-crystal medium and the Fröhlich electrical vibrations

  • N. V. Kamanina
Article

Abstract

A qualitative explanation is given for the effect wherein red blood cells are oriented in a nonlinear liquid-crystal medium, and it is shown that it is different from the Fröhlich interaction for living biological systems.

Keywords

Blood Cell Biological System Qualitative Explanation Electrical Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes, The Physics of Liquid Crystals, Oxford University Press (1974).Google Scholar
  2. 2.
    S. M. Arekelyan and Yu. S. Chilingaryan, Nonlinear Optics of Liquid Crystals [in Russian], Nauka, Moscow (1984).Google Scholar
  3. 3.
    A. A. Vasil’ev, D. Kasasent, I. N. Kompanets, and A. V. Parfenov, Spatial Light Modulators, Radio i Svyaz’, Moscow (1987).Google Scholar
  4. 4.
    N. V. Kamanina, L. N. Soms, and A. A. Tarasov, Opt. Spektrosk. 68, 691 (1990) [Opt. Spectrosc. 68, 403 (1990)].Google Scholar
  5. 5.
    V. V. Danilov, Opt. Zh., No. 7, pp. 8–19 (1993).Google Scholar
  6. 6.
    M. G. Tomilin, Mol. Cryst. Liq. Cryst. 193, 7 (1990).Google Scholar
  7. 7.
    A. Adamchik and Z. Strugal’skii, Liquid Crystals [Russian transl. from Polish], Sov. Radio, Moscow (1979).Google Scholar
  8. 8.
    G. R. Luckhurst and G. W. Gray (Eds.), The Molecular Physics of Liquid Crystals, Academic Press, New York (1979).Google Scholar
  9. 9.
    G. M. Zharkova and A. S. Sonin, Liquid-Crystal Composites [in Russian], VO “Nauka”, Novosibirsk (1994).Google Scholar
  10. 10.
    R. Yamaguchi and S. Sato, Jpn. J. Appl. Phys., Part 2 31(3a), L254 (1992).Google Scholar
  11. 11.
    N. V. Kamanina and V. N. Kidalov, Pis’ma Zh. Tekh. Fiz. 22(14), 39 (1996) [Tech. Phys. Lett. 22, 571 (1996)].Google Scholar
  12. 12.
    V. N. Kidalov and V. F. Lysak, Lab. Delo. Meditsina, No. 8, pp. 36–40 (1989).Google Scholar
  13. 13.
    D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).Google Scholar
  14. 14.
    N. V. Kamanina and N. A. Vasilenko, Proc. Soc. Photo-Opt. Instrum. Eng. (SPIE) 2731, 220 (1995).Google Scholar
  15. 15.
    V. V. Ignat’ev, V. N. Kidalov, V. O. Samoilov et al., Fiziol. Zh. I. M. Sechenova, No. 12, pp. 115–120 (1995).Google Scholar
  16. 16.
    E. M. Aver’yanov, V. A. Zhuikov, V. F. Shabanov, and P. V. Adomenas, Kristallografiya 27, 333 (1982) [Sov. Phys. Crystallogr. 27, 201 (1982)].Google Scholar
  17. 17.
    H. Frohlich, IEEE Trans. Microwave Theory Tech. MTT-26, 613 (1978).Google Scholar
  18. 18.
    S. Rowlands, L. S. Sewchand, and E. G. Enns, Phys. Lett. A 87, 256 (1982).CrossRefADSGoogle Scholar
  19. 19.
    V. A. Levtov, S. A. Regirer, and N. Kh. Shadrina, Rheology of Blood [in Russian], Meditsina, Moscow (1992).Google Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • N. V. Kamanina
    • 1
  1. 1.S. I. Vavilov State Optical Institute All-Russia Science CenterSt. Petersburg

Personalised recommendations