Technical Physics

, Volume 45, Issue 7, pp 931–936 | Cite as

A new model of a quantum magnetometer: A single-cell Cs-K tandem based on four-quantum resonance in 39K atoms

  • E. B. Aleksandrov
  • M. V. Balabas
  • A. K. Vershovskii
  • A. S. Pazgalev
Experimental Instruments and Techniques


A new model of a quantum magnetometer based on the principle of Cs-K tandem was developed and experimentally tested. The specific features of the magnetometer are a single absorption cell containing Cs and K vapors, digital synthesis of the potassium resonance frequency by multiplying the cesium resonance frequency by a conversion factor (the ratio of the atomic constants), and the use of four-quantum resonance in potassium atoms. Device readings were found to be insensitive (within 10 pT) to variations of the main operating parameters even if the variations go far beyond the normal service variability.


Potassium Resonance Frequency Cesium Operating Parameter Absorption Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Aleksandrov, Opt.-Mekh. Prom-st. 55(12), 27 (1988).Google Scholar
  2. 2.
    E. B. Alexandrov and V. A. Bonch-Bruevich, Opt. Eng. 31, 711 (1992).ADSGoogle Scholar
  3. 3.
    E. B. Aleksandrov, V. A. Bonch-Bruevich, and N. N. Yakobson, Opt. Zh., No. 11, 17 (1993).Google Scholar
  4. 4.
    A. H. Allen and P. L. Bender, J. Geomagn. Geoelectr. 24(1), 105 (1972).Google Scholar
  5. 5.
    E. Pulz, H.-J. Linthe, and A. Best, in Proceedings of the VI Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, Dourbes, Belgium, 1994, pp. 7–13.Google Scholar
  6. 6.
    E. B. Aleksandrov and A. S. Pazgalev, Opt. Spektrosk. 80, 534 (1996) [Opt. Spectrosc. 80, 473 (1996)].Google Scholar
  7. 7.
    E. B. Alexandrov, A. S. Pazgalev, and J. L. Rasson, Opt. Spektrosk. 82, 14 (1997) [Opt. Spectrosc. 82, 10 (1997)].ADSGoogle Scholar
  8. 8.
    A. Beckmann, K. D. Boeklen, and D. Elke, Z. Phys. 270, 173 (1974).Google Scholar
  9. 9.
    C. Cohen-Tannoudji and A. Kastler, Prog. Opt. 5, 3 (1966).Google Scholar
  10. 10.
    B. S. Mathur, H. Tang, and W. Happer, Phys. Rev. 171, 11 (1968).CrossRefADSGoogle Scholar
  11. 11.
    B. R. Bulos, A. Marshall, and W. Happer, Phys. Rev. A 4, 51 (1971).ADSGoogle Scholar
  12. 12.
    E. V. Blinov, R. A. Zhitnikov, and P. P. Kuleshov, Zh. Tekh. Fiz. 49, 588 (1979) [Sov. Phys.-Tech. Phys. 24, 336 (1979)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • E. B. Aleksandrov
    • 1
  • M. V. Balabas
    • 1
  • A. K. Vershovskii
    • 1
  • A. S. Pazgalev
    • 1
  1. 1.All-Russia Research CenterVavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations