Advertisement

Technical Physics

, Volume 45, Issue 7, pp 813–820 | Cite as

Theory of cyclotron superradiance from a moving electron bunch under group synchronism conditions

  • N. S. Ginzburg
  • I. V. Zotova
  • A. S. Sergeev
Theoretical and Mathematical Physics

Abstract

A theory is presented of cyclotron superradiance from an electron bunch rotating in a uniform magnetic field and drifting at a velocity close to the group velocity of a wave propagating in a waveguide. It is shown that, in a comoving frame of reference, the bunch emits radiation at a frequency close to the cutoff frequency of the waveguide. Superradiance implies the azimuthal self-bunching of electrons, which is accompanied by coherent emission of the stored rotational energy in a short electromagnetic pulse. Linear and nonlinear stages of the process are analyzed. The growth rate of the superradiance instability is determined. It is shown that the maximum growth rate is attained under group synchronism conditions. The peak power and the characteristic duration of the cyclotron superradiance pulse are determined by numerical simulation. The characteristic features of the superradiance pulses are described in the comoving and laboratory frames. The results of theoretical analysis are compared with experimental data.

Keywords

Growth Rate Magnetic Field Peak Power Group Velocity Cutoff Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Dicke, Phys. Rev. 99, 131 (1954).Google Scholar
  2. 2.
    A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics (Nauka, Moscow, 1988), p. 277.Google Scholar
  3. 3.
    V. V. Zheleznyakov, V. V. Kocharovskii, and Vs. V. Kocharovskii, Usp. Fiz. Nauk 159(2), 193 (1989) [Sov. Phys. Usp. 32, 835 (1989)].Google Scholar
  4. 4.
    R. Bonifachio, C. Maroli, and N. Piovella, Opt. Commun. 68, 369 (1988).ADSGoogle Scholar
  5. 5.
    R. Bonifachio, N. Piovella, and B. W. J. McNeil, Phys. Rev. A 44, 3441 (1991).ADSGoogle Scholar
  6. 6.
    R. Bonifachio, L. D. Salvo, L. Narducci, and E. D. Angelo, Phys. Rev. A 150, 50 (1994).Google Scholar
  7. 7.
    N. S. Ginzburg, Pis’ma Zh. Tekh. Fiz. 14, 440 (1988) [Sov. Tech. Phys. Lett. 14, 197 (1988)].Google Scholar
  8. 8.
    N. S. Ginzburg and A. S. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 54, 445 (1991) [JETP Lett. 54, 446 (1991)].Google Scholar
  9. 9.
    D. A. Jarosynski, P. Chaix, N. Piovella, et al., Phys. Rev. Lett. 78, 1699 (1997).ADSGoogle Scholar
  10. 10.
    V. I. Kanavets and A. Yu. Stabinis, Vestn. Mosk. Gos. Univ., Ser. Fiz. 14, 186 (1973).Google Scholar
  11. 11.
    V. V. Zheleznyakov, V. V. Kocharovskii, and Vs. V. Kocharovskii, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 29, 1095 (1986).ADSGoogle Scholar
  12. 12.
    Yu. A. Il’inskii and N. S. Maslova, Zh. Éksp. Teor. Fiz. 94, 171 (1988) [Sov. Phys. JETP 67, 96 (1988)].ADSGoogle Scholar
  13. 13.
    L. A. Vainshtein and A. I. Kleev, Dokl. Akad. Nauk SSSR 311, 862 (1990) [Sov. Phys. Dokl. 35, 359 (1990)].Google Scholar
  14. 14.
    E. S. Mchedlova and D. I. Trubetskov, Pis’ma Zh. Tekh. Fiz. 19(24), 26 (1993) [Tech. Phys. Lett. 19, 784 (1993)].Google Scholar
  15. 15.
    N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Pis’ma Zh. Tekh. Fiz. 15(14), 83 (1989) [Sov. Tech. Phys. Lett. 15, 573 (1989)].Google Scholar
  16. 16.
    N. S. Ginzburg and A.S. Sergeev, Zh. Tekh. Fiz. 60(8), 40 (1990) [Sov. Phys. Tech. Phys. 35, 896 (1990)].Google Scholar
  17. 17.
    N. S. Ginzburg and A. S. Sergeev, Zh. Éksp. Teor. Fiz. 99, 438 (1991) [Sov. Phys. JETP 72, 243 (1991)].ADSGoogle Scholar
  18. 18.
    N. S. Ginzburg and A. S. Sergeev, Fiz. Plazmy 17, 1318 (1991) [Sov. J. Plasma Phys. 17, 762 (1991)].Google Scholar
  19. 19.
    N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 60, 501 (1994) [JETP Lett. 60, 513 (1994)].Google Scholar
  20. 20.
    N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 63, 322 (1996) [JETP Lett. 63, 331 (1996)].Google Scholar
  21. 21.
    N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al., Phys. Rev. Lett. 78, 2365 (1997).CrossRefADSGoogle Scholar
  22. 22.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 28, 1538 (1975).Google Scholar
  23. 23.
    J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975; Inostrannaya Literatura, Moscow, 1965).Google Scholar
  24. 24.
    V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 57 (1960).Google Scholar
  25. 25.
    V. L. Bratman and M. I. Petelin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 28, 1538 (1975).ADSGoogle Scholar
  26. 26.
    V. L. Bratman, Zh. Tekh. Fiz. 46, 2030 (1976) [Sov. Phys. Tech. Phys. 21, 1188 (1976)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • N. S. Ginzburg
    • 1
  • I. V. Zotova
    • 1
  • A. S. Sergeev
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations