Advertisement

Technical Physics

, Volume 45, Issue 5, pp 521–527 | Cite as

Development prospects of the commercial production of fullerenes

  • A. A. Bogdanov
  • D. Deininger
  • G. A. Dyuzhev
Review

Abstract

The review gives a description of the various modern methods of fullerene production. Reasons of the high cost of fullerenes are discussed, and development prospects of commercial production of fullerenes we analyzed.

Keywords

Fullerene Commercial Production Modern Method Fullerene Production Development Prospect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).CrossRefADSGoogle Scholar
  2. 2.
    W. Kraetschmer, L. D. Lamb, K. Fostiropoulos, and D. Huffman, Nature 347, 354 (1990).ADSGoogle Scholar
  3. 3.
    T. Braun and E. Osawa, Fullerene Sci. Technol. 5(1) (1997).Google Scholar
  4. 4.
    Fullerene (Technologie-Analyse) VDL Technologienzentrum, Ed. by H. Eickenbusch, P. Hartwich, Physikalische Technologien, 1993.Google Scholar
  5. 5.
    J. C. Withers, R. O. Loutfy, and T. P. Lowe, Fullerene Sci. Technol. 5(1), 1 (1997).Google Scholar
  6. 6.
    A. Ya. Vul’ and D. R. Huffman, Mol. Mater. 10, 37 (1998).Google Scholar
  7. 7.
    T. Yadav, in Proceedings of the Symposium on Recent Advances in Chemistry and Phsyics of Fullerenes and Related Materials, 1994, Ed. by R. Ruoff and K. Kadish [Proc. Electrochem. Soc. PV94-24, 111 (1994)].Google Scholar
  8. 8.
    T. Yadav, in Proceedings of the Symposium on Recent Advances in Chemistry and Phsyics of Fullerenes and Related Materials, 1994, Ed. by R. Ruoff and K. Kadish [Proc. Electrochem. Soc. PV94-24, 120 (1994)].Google Scholar
  9. 9.
    G. Dyuzhev, Mol. Mater. 7, 61 (1996).Google Scholar
  10. 10.
    N. S. Goroff, Acc. Chem. Res. 29(2), 77 (1996).CrossRefGoogle Scholar
  11. 11.
    D. H. Parker, P. Wurz, K. Chatterjee, et al., J. Am. Chem. Soc. 113, 7499 (1991).Google Scholar
  12. 12.
    D. Afanas’ev, I. Blinov, A. Bogdanov, et al., Zh. Tekh. Fiz. 64(10), 76 (1994) [Tech. Phys. 39, 1017 (1994)].Google Scholar
  13. 13.
    T. Belz, J. Find, D. Herein, et al., Ber. Bunsenges. Phys. Chem. 101, 712 (1997).Google Scholar
  14. 14.
    K. Yoshie, Sh. Kasuya, K. Eguchi, and T. Yoshida, Appl. Phys. Lett. 61(23), 2782 (1992).CrossRefADSGoogle Scholar
  15. 15.
    T. Yoshida, T. Tani, H. Nishimura, and K. Akashi, J. Appl. Phys. 54, 640 (1983).CrossRefADSGoogle Scholar
  16. 16.
    L. Fulcheri, Y. Schwob, F. Fabry, and G. Flamant, in Proceedings of the 5th European Conference on Thermal Plasma Process, St. Petersburg, 1998, p. 216.Google Scholar
  17. 17.
    Ph. Gerhardt, S. Loeffer, and K.-H. Homann, Chem. Phys. Lett. 137, 306 (1987).CrossRefADSGoogle Scholar
  18. 18.
    J. B. Howard, J. T. McKinnon, Y. Makarovsky, et al., Nature 352, 139 (1991).ADSGoogle Scholar
  19. 19.
    J. B. Howard, J. T. McKinnon, M. T. Johnson, et al., J. Phys. Chem. 96, 6657 (1992).Google Scholar
  20. 20.
    J. B. Howard, A. L. Lafleur, Y. Makarovsky, et al., Carbon 30(8), 1183 (1992).CrossRefGoogle Scholar
  21. 21.
    Th. Baum, S. Loeffler, Ph. Loeffler, et al., Ber. Bunsenges. Phys. Chem. 96(7), 841 (1992).Google Scholar
  22. 22.
    M. Bachman, J. Griesheimer, and K.-H. Homann, Chem. Phys. Lett. 223, 506 (1994).Google Scholar
  23. 23.
    R. Tailor, G. J. Langley, H. W. Kroto, and D. R. M. Walton, Nature 366, 728 (1993).ADSGoogle Scholar
  24. 24.
    Ch. J. Pope, J. A. Marr, and J. B. Howard, J. Phys. Chem. 97, 11001 (1993).Google Scholar
  25. 25.
    H. M. Duan and J. T. McKinnon, J. Phys. Chem. 98(49), 12815 (1994).CrossRefGoogle Scholar
  26. 26.
    H. Richter, A. J. Labrocca, W. J. Grieco, et al., J. Phys. Chem. B 101, 1556 (1997).CrossRefGoogle Scholar
  27. 27.
    D. V. Afanas’ev, G. A. Dyuzhev, and V. I. Karataev, Pis’ma Zh. Tekh. Fiz. 25(5), 35 (1999) [Tech. Phys. Lett. 25, 182 (1999)].Google Scholar
  28. 28.
    L. P. F. Chibante, A. Thess, J. M. Alford, et al., J. Phys. Chem. 97, 8696 (1993).CrossRefGoogle Scholar
  29. 29.
    C. L. Field, J. R. Pitts, M. J. Hale, et al., J. Phys. Chem. 97, 8701 (1993).Google Scholar
  30. 30.
    F. Diederich and J. Rubin, Angew. Chem. Int. Ed. Engl. 31(9), 1101 (1992).CrossRefGoogle Scholar
  31. 31.
    F. Diederich, Nature 369, 199 (1994).CrossRefADSGoogle Scholar
  32. 32.
    W. E. Barth and R. G. Lawton, J. Am. Chem. Soc. 88(2), 380 (1966).CrossRefGoogle Scholar
  33. 33.
    P. W. Rabideau, A. Y. Abdourazak, H. E. Folsom, et al., J. Am. Chem. Soc. 116(17), 7891 (1994).CrossRefGoogle Scholar
  34. 34.
    L. T. Scott, M. S. Bratcher, and S. Hagen, J. Am. Chem. Soc. 118(36), 8743 (1996).CrossRefGoogle Scholar
  35. 35.
    S. Hagen, M. S. Bratcher, M. S. Erickson, et al., Angew. Chem. Int. Ed. Engl. 36(4), 406 (1997).CrossRefGoogle Scholar
  36. 36.
    P. R. Buseck, S. J. Tsipurski, and R. Hettich, Science 257(5067), 215 (1992).ADSGoogle Scholar
  37. 37.
    E. Ozawa, Fullerene Sci. Technol. 7(4), 637 (1999).MathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • A. A. Bogdanov
    • 1
  • D. Deininger
    • 2
  • G. A. Dyuzhev
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institut für Innovative Technologien GmbHKéthenGermany

Personalised recommendations