Advertisement

Technical Physics

, Volume 44, Issue 9, pp 1069–1072 | Cite as

Nonlinear energy-selective nanoscale modifications of materials and dynamics in metals and semiconductors

  • S. Marka
  • C. Parks Cheney
  • W. Wang
  • G. Lüpke
  • J. Gilligan
  • Y. Yao
  • N. H. Tolk
Surfaces, Electron and Ion Emission
  • 21 Downloads

Abstract

Studies of nonlinear, energy-selective material interactions localized at surfaces, heterointerfaces, impurities, and defects in solids are described. Particular reference is made to a new molecular interaction effect caused by transfer of surface energy by low-energy collisions, a new noncontact nonlinear optical method of studying electron and hole dynamics at a heterointerface, and a new approach using a free-electron laser developed at Vanderbilt University to activate hydrogen-passivated dopants in silicon. In each case the unique characteristics of particle and photon beams, optimized for the technology, were used to extend the range of applications of these new energy-selective techniques to solve fundamental and applied problems.

Keywords

Silicon Interaction Effect Surface Energy Unique Characteristic Molecular Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yao, Z. Hargitai, M. Albert et al., Phys. Rev. Lett. 81, 550 (1998).CrossRefADSGoogle Scholar
  2. 2.
    Y. Yao, PhD dissertation, Vanderbilt University (1997).Google Scholar
  3. 3.
    L. D. Landau and E. Teller, Phys. Z. Sowjetunion 10, 34 (1936).Google Scholar
  4. 4.
    J. G. Mihaychuk, J. Bloch, and H. M. van Driel, Opt. Lett. 20, 2063 (1995).ADSGoogle Scholar
  5. 5.
    J. Bloch, J. G. Mihaychuk, and H. M. van Driel, Phys. Rev. Lett. 77, 920 (1996).CrossRefADSGoogle Scholar
  6. 6.
    N. Shamir, J. G. Mihaychuk, and H. M. van Driel, J. Vac. Sci. Technol. A 15, 2081 (1997).CrossRefADSGoogle Scholar
  7. 7.
    W. Wang, G. Lüpke, M. Di Ventra et al., Phys. Rev. Lett. 81, 4224 (1998).ADSGoogle Scholar
  8. 8.
    J. L. Alay and M. Hirose, Appl. Phys. Lett. 81, 1606 (1997).Google Scholar
  9. 9.
    P. Perfetti, C. Quaresima, C. Coluzza et al., Phys. Rev. Lett. 57, 2065 (1986).CrossRefADSGoogle Scholar
  10. 10.
    The Si-SiO 2 System, 1st ed., edited by P. Balk (Elsevier, Amsterdam, 1988).Google Scholar
  11. 11.
    A. Ueda, J. T. McKinley, R. G. Albridge et al., Mater. Res. Soc. Symp. Proc. 285, 215 (1993).Google Scholar
  12. 12.
    J. T. McKinley, R. G. Albridge, A. V. Barnes et al., Nucl. Instrum. Methods Phys. Res. A 341, 156 (1994).CrossRefADSGoogle Scholar
  13. 13.
    J. T. McKinley, R. G. Albridge, A. U. Barnes et al., J. Vac. Sci. Technol. A 12, 2323 (1994).CrossRefADSGoogle Scholar
  14. 14.
    G. Margaritondo, C. Coluzza, J. L. Staehli et al., J. Phys. (Paris) III 4, Colloque C9, Suppl. (1994).Google Scholar
  15. 15.
    A. Ueda, R. G. Albridge, A. V. Barnes et al., Nucl. Instrum. Methods Phys. Res. B 100, 427 (1995).CrossRefADSGoogle Scholar
  16. 16.
    N. H. Talk, R. G. Albridge, A. V. Barnes et al., Appl. Surf. Sci. 106, 205 (1996).Google Scholar
  17. 17.
    K. Bergman, M. Stavola, S. J. Pearton, and J. Lopata, Phys. Rev. B 37, 2770 (1988).ADSGoogle Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • S. Marka
    • 1
  • C. Parks Cheney
    • 1
  • W. Wang
    • 1
  • G. Lüpke
    • 1
  • J. Gilligan
    • 1
  • Y. Yao
    • 1
  • N. H. Tolk
    • 1
  1. 1.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations