Technical Physics

, Volume 44, Issue 4, pp 438–442 | Cite as

Determination of the thermal conductivity of polycrystalline diamond films by means of the photoacoustic effect

  • A. N. Obraztsov
  • I. Yu. Pavlovskii
  • V. G. Ral’chenko
  • H. Okushi
  • H. Watanabe
Surfaces, Electron and Ion Emission


A new method of determining the heat-conducting properties of diamond films is proposed, based on the photoacoustic effect. This method is used to study diamond polycrystalline films grown on silicon by chemical vapor deposition in a microwave discharge plasma. The thermal conductivity obtained was approximately half that for single-crystal diamond.


Silicon Microwave Thermal Conductivity Chemical Vapor Deposition Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Properties of Diamond, edited by J. E. Field (Academic Press, London, 1990, 674 pp.).Google Scholar
  2. 2.
    B. V. Spitsyn, in Handbook of Crystal Growth, Vol. 3 (Elsevier, North-Holland, 1994, p. 403.).Google Scholar
  3. 3.
    J. E. Graebner, Diamond Films Technol. 3, 77 (1993).Google Scholar
  4. 4.
    E. P. Visser, E. H. Versteegen, and W. J. P. van Enckervort, J. Appl. Phys. 71, 3238 (1992).ADSGoogle Scholar
  5. 5.
    T. R. Anthony, W. F. Banholzer, J. F. Fleisher et al., Phys. Rev. B 4, 1104 (1990).ADSGoogle Scholar
  6. 6.
    J. E. Graebner, V. G. Ralchenko, A. A. Smolin et al., Diamond Relat. Mater. 5, 643 (1996).Google Scholar
  7. 7.
    E. Wörner, C. Wild, W. Muller-Sebert et al., Diamond Relat. Mater. 5, 688 (1996).Google Scholar
  8. 8.
    J. E. Graebner, J. A. Mucha, L. Seibles, and G. W. Kammlott, J. Appl. Phys. 71, 3143 (1992).ADSGoogle Scholar
  9. 9.
    D. Fournier and K. Plaman, Diamond Relat. Mater. 4, 809 (1995).Google Scholar
  10. 10.
    J. C. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980, 309 pp.).Google Scholar
  11. 11.
    A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).CrossRefADSGoogle Scholar
  12. 12.
    P. K. Bachmann and D. U. Wiechert, Diamond Relat. Mater. 1, 422 (1992).Google Scholar
  13. 13.
    A. T. Collins, Diamond Relat. Mater. 1, 457 (1992).Google Scholar
  14. 14.
    V. S. Vavilov, A. A. Gippius, A. M. Zaitsev et al., Fiz. Tekh. Poluprovodn. 14, 1078 (1980) [Sov. Phys. Semicond. 14, 1811 (1980)].Google Scholar
  15. 15.
    A. N. Obraztsov, H. Okushi, H. Watanabe, and I. Yu. Pavlovsky, Diamond Relat. Mater. 6, 1124 (1997).Google Scholar
  16. 16.
    A. N. Obraztsov, T. Izumi, H. Okushi et al., Vestn. Mosk. Univ. Ser. Fiz. Astron., No. 3, 45 (1997).Google Scholar
  17. 17.
    Diamond: Electronic Properties and Applications, edited by L. S. Pan and D. R. Kania (Kluwer, Dordrecht, 1995, p. 370.).Google Scholar
  18. 18.
    J. E. Graebner, M. E. Reiss, L. Seibles et al., Phys. Rev. B 50, 3702 (1994).CrossRefADSGoogle Scholar
  19. 19.
    H. Kiyota, H. Okushi, T. Ando et al., in Proceedings of the Sixth European Conference on Diamond, Diamond-like and Related Materials (Barcelona, 1995, p. 8094).Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • I. Yu. Pavlovskii
    • 1
  • V. G. Ral’chenko
    • 2
  • H. Okushi
    • 3
  • H. Watanabe
    • 3
  1. 1.M. V. Lomonosov State UniversityMoscowRussia
  2. 2.Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Electrotechnical LaboratoryTsukuba, IbarakiJapan

Personalised recommendations