, Volume 34, Issue 7, pp 741–745 | Cite as

Investigation of distribution and redistribution of silicon in thin doped gallium-arsenide layers grown by molecular beam epitaxy on substrates with (100), (111)Ga, and (111)As orientations

  • G. B. Galiev
  • V. É. Kaminskii
  • V. G. Mokerov
  • V. K. Nevolin
  • V. V. Saraikin
  • Yu. V. Slepnev
Atomic Structure and Nonelectronic Properties of Semiconductors


The distribution of silicon in GaAs was investigated by secondary-ion mass spectrometry (SIMS) before and after the thermal annealing of thin doped GaAs layers grown by molecular beam epitaxy on substrates with (100), (111)Ga, and (111)As orientations. The surface relief pattern of the grown epitaxial films was studied by atomic-force microscopy both inside and outside the ion-etching crater developed during the SIMS analysis. Features of the surface relief inside the crater are revealed for various orientations. Changes observed in the shape of doping profiles are explained both by the features of the development of the surface relief during the ion etching accompanying the SIMS analysis and by an accelerated diffusion of Si over the growth defects.


Silicon Mass Spectrometry GaAs Magnetic Material Molecular Beam Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. I. Wang, E. E. Méndez, T. S. Kuan, and L. Esaki, Appl. Phys. Lett. 47, 826 (1985).CrossRefADSGoogle Scholar
  2. 2.
    F. Piazza, L. Pavesi, M. Henin, and D. Johnston, Semicond. Sci. Technol. 7, 1504 (1992).CrossRefADSGoogle Scholar
  3. 3.
    V. G. Mokerov, G. B. Galiev, Yu. V. Slepnev, and Yu. V. Khabarov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 1320 (1998) [Semiconductors 32, 1175 (1998)].Google Scholar
  4. 4.
    Y. Okano, H. Seto, H. Katahama, et al., Jpn. J. Appl. Phys. 28, L151 (1989).Google Scholar
  5. 5.
    Y. Kadoya, A. Sato, and H. Kano, J. Cryst. Growth 111, 280 (1991).CrossRefGoogle Scholar
  6. 6.
    Ph. Jansen, M. Meuris, M. van Rossum, and G. Borgs, J. Appl. Phys. 68, 3766 (1990).CrossRefADSGoogle Scholar
  7. 7.
    E. F. Schubert, J. B. Stark, T. H. Chiu, and B. Tell, Appl. Phys. Lett. 53, 293 (1988).ADSGoogle Scholar
  8. 8.
    K. H. Lee, D. A. Stevenson, and M. D. Deal, J. Appl. Phys. 68, 4008 (1990).ADSGoogle Scholar
  9. 9.
    L. Pavesi, N. H. Ky, and J. D. Ganiere, J. Appl. Phys. 71, 2225 (1992).CrossRefADSGoogle Scholar
  10. 10.
    R. B. Beall, J. B. Clegg, and J. J. Harris, Semicond. Sci. Technol. 3, 612 (1988).CrossRefADSGoogle Scholar
  11. 11.
    A.-M. Lanzillotto, M. Santos, and M. Shayegan, Appl. Phys. Lett. 55, 1445 (1989).CrossRefADSGoogle Scholar
  12. 12.
    M. E. Greiner and J. F. Gibbons, Appl. Phys. Lett. 44, 750 (1984).CrossRefADSGoogle Scholar
  13. 13.
    A. Ishitani, A. Karen, Y. Nakagawa, et al., in Proceedings of SIMS VIII Conference (Amsterdam, The Netherlands, 1991), p. 315.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • G. B. Galiev
    • 1
  • V. É. Kaminskii
    • 1
  • V. G. Mokerov
    • 1
  • V. K. Nevolin
    • 2
  • V. V. Saraikin
    • 1
  • Yu. V. Slepnev
    • 1
  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Electronic Engineering (Technical University)MoscowRussia

Personalised recommendations