Physics of the Solid State

, Volume 42, Issue 5, pp 918–924

Nonlinear response of superparamagnetic particles to a sudden change of a high constant magnetic field

  • Yu. P. Kalmykov
  • S. V. Titov
Magnetism and Ferroelectricity

Abstract

For a system of superparamagnetic particles in a high external constant magnetic field, a technique for calculating the nonlinear response to a sudden change in the field direction and magnitude is proposed. A set of momentary equations for the averaged spherical harmonics, which is derived from the Fokker-Planck equation for the magnetization-orientation distribution function is the basis of this technique. As an example, the nonlinear response of a system of particles with anisotropy of the easy-axis type is examined. For this case, a solution to the momentary equations is obtained by using matrix continued fractions. The magnetization relaxation time and the spectrum of the relaxation function are calculated for typical values of anisotropy, dissipation, and nonlinearity parameters. It is shown that the magnetization kinetics is essentially dependent on these parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Néel, Ann. Geophys. 5, 99 (1949).Google Scholar
  2. 2.
    H. B. Braun and H. N. Bertram, J. Appl. Phys. 75, 4609 (1994).ADSGoogle Scholar
  3. 3.
    C. P. Bean and J. D. Livingston, Suppl. J. Appl. Phys. 30, 1205 (1959).Google Scholar
  4. 4.
    W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).ADSGoogle Scholar
  5. 5.
    T. L. Gilbert, Phys. Rev. 100, 1243 (1956).Google Scholar
  6. 6.
    W. F. Brown, Jr., IEEE Trans. Mag. 15, 1196 (1979).Google Scholar
  7. 7.
    Yu. L. Raikher and M. I. Shliomis, Adv. Chem. Phys. 87, 595 (1994).Google Scholar
  8. 8.
    L. J. Geoghegan, W. T. Coffey, and B. Mulligan, Adv. Chem. Phys. 100, 475 (1997).Google Scholar
  9. 9.
    L. M. Blinov, Electro-and Magnetooptics of Liquid Crystals (Nauka, Moscow, 1982).Google Scholar
  10. 10.
    G. Moro and P. L. Nordio, Z. Phys. B.: Condens. Matter 64, 217 (1986).CrossRefGoogle Scholar
  11. 11.
    J. L. Dejardin, Dynamic Kerr Effect (World Scientific, Singapour, 1996).Google Scholar
  12. 12.
    A. Aharoni, Phys. Rev. 177, 763 (1969).CrossRefADSGoogle Scholar
  13. 13.
    D. A. Garanin, V. V. Ishchenko, and L. V. Panina, Zh. Teor. Mat. Fiz. 82, 242 (1990).Google Scholar
  14. 14.
    W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, et al., Phys. Rev. B 51, 15947 (1995).Google Scholar
  15. 15.
    É. K. Sadykov and A. G. Isavnin, Fiz. Tverd. Tela 38, 2104 (1996) [Phys. Solid State 38, 1160 (1996)].Google Scholar
  16. 16.
    Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B 55, 15005 (1997).Google Scholar
  17. 17.
    Yu. L. Raikher, V. I. Stepanov, A. N. Grigirenko, et al., Phys. Rev. E 56, 6400 (1997).CrossRefADSGoogle Scholar
  18. 18.
    I. Klik and L. Gunther, J. Stat. Phys. 60, 473 (1990).CrossRefGoogle Scholar
  19. 19.
    Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela 41, 2020 (1999) [Phys. Solid State 41, 1854 (1999)].Google Scholar
  20. 20.
    Yu. P. Kalmykov and S. V. Titov, Phys. Rev. Lett. 82, 2967 (1999).CrossRefADSGoogle Scholar
  21. 21.
    R. N. Zare, Angular Momentum: Understanding Spacial Aspects in Chemistry and Physics (Wiley, New York, 1988; Mir, Moscow, 1993).Google Scholar
  22. 22.
    Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, Phys. Rev. B 58, 3267 (1998).CrossRefADSGoogle Scholar
  23. 23.
    Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela 40, 1642 (1998) [Phys. Solid State 40, 1492 (1998)].Google Scholar
  24. 24.
    Yu. P. Kalmykov and S. V. Titov, Zh. Éksp. Teor. Fiz. 115, 101 (1999) [JETP 88, 58 (1999)].Google Scholar
  25. 25.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989).Google Scholar
  26. 26.
    W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation (World Scientific, Singapore, 1996).Google Scholar
  27. 27.
    Yu. P. Kalmykov, J. L. Dejardin, and W. T. Coffey, Phys. Rev. E 55, 2509 (1997).CrossRefADSGoogle Scholar
  28. 28.
    W. T. Coffey, D. S. F. Crothers, J. L. Dormann, et al., Phys. Rev. B 58, 3249 (1998).CrossRefADSGoogle Scholar
  29. 29.
    W. T. Coffey, D. S. F. Crothers, J. L. Dormann, et al., Phys. Rev. Lett. 80, 5655 (1998).CrossRefADSGoogle Scholar
  30. 30.
    D. A. Garanin, Phys. Rev. E 54, 3250 (1996).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • Yu. P. Kalmykov
    • 1
  • S. V. Titov
    • 1
  1. 1.Institute of Radio Engineering and Electronics (Fryazino Branch)Russian Academy of SciencesFryazino, Moscow oblastRussia

Personalised recommendations