Physics of the Solid State

, Volume 42, Issue 3, pp 522–527 | Cite as

Barrier photovoltaic effects in PZT ferroelectric thin films

  • V. K. Yarmarkin
  • B. M. Gol’tsman
  • M. M. Kazanin
  • V. V. Lemanov
Magnetism and Ferroelectricity


The photoelectric characteristics (independent of ferroelectric polarization) of metal-ferroelectric-metal thin film structures upon exposure to radiation in different ranges of mercury arc lamp spectrum are studied for the Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics. The PZT films on platinized silicon substrates were prepared by the sol-gel technique. The relaxations of the short-circuit current and the open-circuit voltage are investigated at different intensities of light with wavelengths in the range 300–1200 nm. It is found that the open-circuit voltage returns to its original value after the cessation of light exposure and a short-term holding of structures in the short-circuited state. The factors responsible for the photocurrent and the photoemf are analyzed, and the conclusion is made that they are predominantly contributed by the barrier photovoltaic effects associated with the presence of the p-n junction in the bulk of films and the Schottky barrier in the film region adjacent to the lower platinum electrode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Fridkin, Ferroelectrics-Semiconductors (Nauka, Moscow, 1976).Google Scholar
  2. 2.
    P. S. Brody and B. J. Rod, Integr. Ferroelectrics 2, 1 (1992).Google Scholar
  3. 3.
    J. Lee, S. Esayan, J. Prohaska, et al., Appl. Phys. Lett. 64, 294 (1994).ADSGoogle Scholar
  4. 4.
    S. Thakoor, J. Perry, and J. Maserjian, Integr. Ferroelectrics 4, 333 (1994).Google Scholar
  5. 5.
    V. V. Lemanov, A. V. Sotnikov, and N. K. Yushin, Pis’ma Zh. Tekh. Fiz. 19, 61 (1993).Google Scholar
  6. 6.
    V. K. Yarmarkin, N. V. Zaitseva, S. V. Shtel’makh, et al., Fiz. Tverd. Tela (St. Petersburg) 37, 324 (1995).Google Scholar
  7. 7.
    S. M. Ryvkin, Photoelectric Phenomena in Semiconductors (Fizmatgiz, Moscow, 1963).Google Scholar
  8. 8.
    K. Sreenivas, M. Sayer, and P. Garrett, Thin Solid Films 172, 251 (1989).CrossRefGoogle Scholar
  9. 9.
    W. Ruppel, R. V. Baltz, and P. Wurfel, Ferroelectrics 43, 109 (1982).Google Scholar
  10. 10.
    S. Thakoor and J. Maserjian, J. Vac. Sci. Technol. A 12, 295 (1994).CrossRefADSGoogle Scholar
  11. 11.
    V. K. Yarmarkin and S. P. Teslenko, Fiz. Tverd. Tela (St. Petersburg) 40, 1915 (1998).Google Scholar
  12. 12.
    T. Mihara, H. Watanabe, H. Yoshimori, et al., Integr. Ferroelectrics 1, 269 (1992).Google Scholar
  13. 13.
    S. K. Dey, J.-J. Lee, and P. Alluri, Jpn. J. Appl. Phys., Part 1 34(6A), 3142 (1995).Google Scholar
  14. 14.
    M. K. Sheinkman and A. Ya. Shik, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 209 (1976).Google Scholar
  15. 15.
    J. F. Scott, Ferroelectrics Rev. 1, 1 (1998).Google Scholar
  16. 16.
    A. K. Tagantsev, Cz. Pawlaczyk, K. Brooks, et al., Integr. Ferroelectrics 4, 1 (1994).Google Scholar
  17. 17.
    S. K. Dey and R. Zuleeg, Ferroelectrics, Part B 112, 309 (1990).Google Scholar
  18. 18.
    B. N. Melnick, J. F. Scott, C. A. Paz De Araujo, et al., Ferroelectrics 135, 163 (1992).Google Scholar
  19. 19.
    K. A. Vorotilov, M. I. Yanovskaya, and O. A. Dorochova, Integr. Ferroelectrics 3, 33 (1993).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2000

Authors and Affiliations

  • V. K. Yarmarkin
    • 1
  • B. M. Gol’tsman
    • 1
  • M. M. Kazanin
    • 1
  • V. V. Lemanov
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations