Advertisement

Physics of the Solid State

, Volume 41, Issue 6, pp 905–908 | Cite as

Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap

  • I. A. Vainshtein
  • A. F. Zatsepin
  • V. S. Kortov
Semiconductors. Dielectrics

Abstract

We have carried out a comparison of relations used to describe the temperature dependence of the width of the band gap in crystals. It is shown that for kT≫ℏω the well-known Varshni relation can be obtained from the non-empirical Fan expression in explicit form taking account of the phonon statistics. We have calculated the temperature coefficient bof the width of the band gap for a number of materials in the range where the high-temperature condition is not met. We have found that the Varshni relation overestimates β, whereas calculations based on the Fan expression agree with experiment.

Keywords

Spectroscopy State Physics Explicit Form Temperature Coefficient Phonon Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook of Physical Quantities, edited by I. S. Grigor’ev and E. Z. Meilikhov [in Russian] (Énergoatomizdat, Moscow, 1991).Google Scholar
  2. 2.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).Google Scholar
  3. 3.
    J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, N.J., 1971).Google Scholar
  4. 4.
    K. V. Shalimova, Physics of Semiconductors [in Russian] (Énergiya, Moscow, 1976).Google Scholar
  5. 5.
    Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).CrossRefGoogle Scholar
  6. 6.
    N. M. Ravindra and V. K. Srivastava, J. Phys. Chem. Solids 40, 791 (1979).Google Scholar
  7. 7.
    H. Y. Fan, Phys. Rev. 82, 900 (1951).ADSzbMATHGoogle Scholar
  8. 8.
    R. C. Tu, Y. K. Su, C. F. Li, Y. S. Huang, S. T. Chou, W. H. Lan, S. L. Tu, and H. Chang, J. Appl. Phys. 83, 1664 (1998).ADSGoogle Scholar
  9. 9.
    A. Radkowsky, Phys. Rev. 73, 749 (1948).CrossRefADSzbMATHGoogle Scholar
  10. 10.
    A. S. Davydov, Theory of Light Absorption in Molecular Crystals [in Russian] (Izdat. Akad. Nauk USSR, Kiev, 1951).Google Scholar
  11. 11.
    H. Y. Fan, Photon-Electron Interaction: Crystals Without Fields (Springer-Verlag, Berlin, 1967).Google Scholar
  12. 12.
    T. Skettrup, Phys. Rev. B 18, 2622 (1978).CrossRefADSGoogle Scholar
  13. 13.
    P. B. Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981); 24, 7479 (1981).ADSGoogle Scholar
  14. 14.
    J. N. Zakis and H. Fritzsche, Phys. Status Solidi B 64, 123 (1974).Google Scholar
  15. 15.
    Yu. R. Zakis and A. V. Moskal’onov, Uch. Zap. LGU 231, 61 (1975) [Lecture Notes, Leningrad State Univ.].Google Scholar
  16. 16.
    G. D. Cody, “The optical absorption edge of a-Si:H,” in Hydrogenated Amorphous Silicon, Part B, edited by J. Pankove (Academic Press, New York, 1984), p. 11.Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • I. A. Vainshtein
    • 1
  • A. F. Zatsepin
    • 1
  • V. S. Kortov
    • 1
  1. 1.Urals State Technical UniversityEkaterinburgRussia

Personalised recommendations