Advertisement

Physics of the Solid State

, Volume 40, Issue 7, pp 1112–1116 | Cite as

Influence of structural characteristics on the thermal conductivity of polycrystalline diamond films

  • A. N. Obraztsov
  • I. Yu. Pavlovskii
  • H. Okushi
  • H. Watanabe
Semiconductors and Insulators

Abstract

By analyzing the signal formed by the photoacoustic effect as a function of the light modulation frequency, it is shown that this effect may be used to determine the thermal conductivity of diamond materials. The method is checked experimentally for two types of polycrystalline diamond films grown by chemical vapor deposition with the gaseous medium activated by a dc discharge and a microwave discharge. The data obtained on the thermal conductivity of the films are discussed with reference to the results of an investigation of the optical absorption, Raman light scattering, and cathodoluminescence of similar films. It is shown that the thermal conductivity of polycrystalline diamond films depends on the structural characteristics, which are determined by the deposition conditions.

Keywords

Microwave Thermal Conductivity Structural Characteristic Light Scattering Modulation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Obraztsov, I. Yu. Pavlovskii, H. Okushi, and H. Watanabe, Fiz. Tverd. Tela (St. Petersburg) 39, 1787 (1997) [Phys. Solid State 39, 1594 (1997)].Google Scholar
  2. 2.
    D. Fournier and K. Plaman, Diamond Relat. Mater. 4, 809 (1995).Google Scholar
  3. 3.
    J. E. Graebner, Diamond Films Technol. 3, 77 (1993).Google Scholar
  4. 4.
    A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980), p. 309.Google Scholar
  5. 5.
    A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).CrossRefADSGoogle Scholar
  6. 6.
    A. Rosencwaig and A. Gersho, Science 190, 556 (1975).ADSGoogle Scholar
  7. 7.
    The Properties of Diamond, edited by J. E. Field (Academic Press, London, 1990), p. 674.Google Scholar
  8. 8.
    T. R. Anthony, W. F. Banholzer, J. F. Fleisher, L. Wei, P. K. Kuo, and R. L. Tomas, Phys. Rev. B 4, 1104 (1990).ADSGoogle Scholar
  9. 9.
    J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Harnett, R. P. Miller, and C. J. Robinson, Phys. Rev. B 50, 3702 (1994).CrossRefADSGoogle Scholar
  10. 10.
    A. T. Collins, Diamond Relat. Mater. 1, 457 (1992).Google Scholar
  11. 11.
    V. S. Vavilov, A. A. Gippius, A. M. Zaitsev, B. V. Deryagin, and B. V. Spitsyn, Fiz. Tekh. Poluprovodn. 14, 1077 (1980) [Sov. Phys. Semicond. 14, 641 (1980)].Google Scholar
  12. 12.
    A. N. Obraztsov, I. Yu. Pavlovsky, G. V. Saparin, and S. K. Obyden, J. Scanning Microscopy 19, 199 (1997).Google Scholar
  13. 13.
    B. V. Soitsyn, in Handbook of Crystal Growth, edited by D. T. J. Hurtle, Vol. 3 (Elsevier, Amsterdam, 1994), p. 403.Google Scholar

Copyright information

© American Institute of Physics 1998

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • I. Yu. Pavlovskii
    • 1
  • H. Okushi
    • 2
  • H. Watanabe
    • 2
  1. 1.M. V. Lomonosov State UniversityMoscowRussia
  2. 2.Electrotechnical LaboratoryTsukuba, IbarakiJapan

Personalised recommendations