Physics of the Solid State

, Volume 39, Issue 10, pp 1594–1598 | Cite as

Photoacoustic spectroscopy of diamond powders and polycrystalline films

  • A. N. Obraztsov
  • I. Yu. Pavlovskii
  • H. Okushi
  • H. Watanabe
Semiconductors and Insulators

Abstract

Photoacoustic spectroscopy is used to study optical absorption in diamond powders and polycrystalline films. The photoacoustic spectra of diamond powders with crystallite sizes in the range from ∼100 µm to 4 nm and diamond films grown by chemical vapor deposition (CVD) had a number of general characteristic features corresponding to the fundamental absorption edge for light with photon energies exceeding the width of the diamond band gap (∼5.4 eV) and to absorption in the visible and infrared by crystal-structure defects and the presence of non-diamond carbon. For samples of thin (∼10 µm) diamond films on silicon, the photoacoustic spectra revealed peculiarities associated with absorption in the silicon substrate of light transmitted by the diamond film. The shape of the spectral dependence of the amplitude of the photoacoustic signal in the ultraviolet indicates considerable scattering of light specularly reflected from the randomly distributed faces of the diamond crystallites both in the polycrystalline films and in the powders. The dependence of the shape of the photoacoustic spectra on the light modulation frequency allows one to estimate the thermal conductivity of the diamond films, which turns out to be significantly lower than the thermal conductivity of single-crystal diamond.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. E. Spear and J. P. Dismukes (editors), Synthetic Diamond Emerging CVD Science and Technology (J. Wiley & Sons, Inc., New York, 1994).Google Scholar
  2. 2.
    V. B. Kvaskov (Ed.), Diamond in Electronics Technology: Collection of Papers [in Russian], Énergoatomizdat, Moscow (1990).Google Scholar
  3. 3.
    A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (J. Wiley & Sons, New York, 1980).Google Scholar
  4. 4.
    A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).CrossRefADSGoogle Scholar
  5. 5.
    A. Rosencwaig and A. Gersho, Science 190, 556 (1975).ADSGoogle Scholar
  6. 6.
    V. L. Kuznetsov, M. N. Aleksandrov, I. V. Zagoruiko, A. L. Chuvilin, E. M. Moroz, V. N. Kolomiichuk, V. A. Likhoborov, P. M. Brylyakov, and G. V. Sakovitch, Carbon 29, 665 (1991).CrossRefGoogle Scholar
  7. 7.
    Q. Ouyang and K. Okado, Appl. Surf. Sci. 78, 309 (1994).CrossRefGoogle Scholar
  8. 8.
    A. N. Obraztsov, M. A. Timofeyev, M. B. Guseva, V. G. Babaev, Z. Kh. Valiullova, and V. M. Babina, Diamond and Related Materials 4, 968 (1995).CrossRefGoogle Scholar
  9. 9.
    M. Nesladek, M. Vanecek, and L. M. Stals, Phys. Status Solidi A 154, 283 (1996).Google Scholar
  10. 10.
    H. Tokumoto, M. Tokumoto, and T. Ishiguro, J. Phys. Soc. Jpn. 50, 602 (1981).Google Scholar
  11. 11.
    D. S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).ADSGoogle Scholar
  12. 12.
    V. P. Varnin, in Proceedings of the First International Seminar on Diamond Films [in Russian], Ulan-Udé, USSR (1991), p. 70.Google Scholar
  13. 13.
    H. P. Phillip and E. A. Taft, Phys. Rev. 127, 159 (1962).ADSGoogle Scholar
  14. 14.
    R. Tilgner, Appl. Opt. 20, 3780 (1981).ADSGoogle Scholar

Copyright information

© American Institute of Physics 1997

Authors and Affiliations

  • A. N. Obraztsov
    • 1
  • I. Yu. Pavlovskii
    • 1
  • H. Okushi
    • 2
  • H. Watanabe
    • 2
  1. 1.M. V. LomonosovMoscow State UniversityMoscowRussia
  2. 2.Electrotechnical LaboratoryTsukuba, IbarakiJapan

Personalised recommendations