Advertisement

Biointerphases

, Volume 5, Issue 4, pp 131–138 | Cite as

Human guanylate-binding protein 1 as a model system investigated by several surface techniques

  • Andreas Kerstan
  • Tatjana Ladnorg
  • Christian Grunwald
  • Tobias Vöpel
  • Denise Zacher
  • Christian Herrmann
  • Christof Wöll
Open Access
Article

Abstract

In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors. Various independent methods that are based on different biophysical properties such as surface plasmon resonance, atomic force microscopy, and quartz crystal microbalance have been used to determine the orientation of the hGBP1 variants after anchoring them via a streptavidin-linker to a biotinylated surface. The activity of guanosine-triphosphate hydrolysis of hGBP1 monomers bound on the surface is found to depend on their orientation relative to the substrate, relating to their ability to form dimers with other neighboring anchored mutants; the maximum activity is lower than that observed in solutions, as might be expected from diffusion limitations at the solid/liquid interface on the one hand and prevention from homodimer formation due to immobilization on the other hand.

References

  1. 1.
    C. Grunwald, K. Schulze, A. Reichel, V. U. Weiss, D. Blaas, J. Piehler, K.-H. Wiesmüller, and R. Tampé, Proc. Natl. Acad. Sci. U.S.A. 107, 6146 (2010).CrossRefGoogle Scholar
  2. 2.
    L. S. Wong, F. Khan, and J. Micklefield, Chem. Rev. (Washington, D.C.) 109, 4025 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Lata, A. Reichel, R. Brock, R. Tampé, and J. Piehler, J. Am. Chem. Soc. 127, 10205 (2005).CrossRefGoogle Scholar
  4. 4.
    H. R. Bourne, D. A. Sanders, and F. McCormick, Nature (London) 348, 125 (1990).CrossRefGoogle Scholar
  5. 5.
    S. L. Anderson, J. M. Carton, J. Lou, L. Xing, and B. Y. Rubin, Virology 256, 8 (1999).CrossRefGoogle Scholar
  6. 6.
    P. Staeheli, F. Pitossi, and J. Pavlovic, Trends Cell Biol. 3, 268 (1993).CrossRefGoogle Scholar
  7. 7.
    G. J. K. Praefcke, M. Geyer, M. Schwemmle, H. R. Kalbitzer, and C. Herrmann, J. Mol. Biol. 292, 321 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Sever, H. Damke, and S. L. Schmid, J. Cell Biol. 150, 1137 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. S. Cheng, C. E. Patterson, and P. Staeheli, Mol. Cell. Biol. 11, 4717 (1991).Google Scholar
  10. 10.
    B. Prakash, L. Renault, G. J. K. Praefcke, C. Herrmann, and A. Wittinghofer, EMBO J. 19, 4555 (2000).CrossRefGoogle Scholar
  11. 11.
    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, J. Biol. Chem. 281, 28627 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Schwemmle and P. Staeheli, J. Biol. Chem. 269, 11299 (1994).Google Scholar
  13. 13.
    C. Grunwald, W. Eck, N. Opitz, J. Kuhlmann, and C. Wöll, Phys. Chem. Chem. Phys. 6, 4358 (2004).CrossRefGoogle Scholar
  14. 14.
    R. Chelmowski, A. Prekelt, C. Grunwald, and C. Wöll, J. Phys. Chem. A 111, 12295 (2007).CrossRefGoogle Scholar
  15. 15.
    H.-L. Schmidt, W. Schumann, and F. Scheller, Specific Features of Biosensors Sensors, A Comprehensive Survey (Verlag Chemie, Weinheim, (1992), Vol. 1, pp. 719–801.Google Scholar
  16. 16.
    C. Czeslik, Z. Phys. Chem. 218, 771 (2004).CrossRefGoogle Scholar
  17. 17.
    C. Czeslik, G. Jackler, and C. Royer, Spectroscopy 16, 139 (2002).CrossRefGoogle Scholar
  18. 18.
    W. Norde, Macromol. Symp. 103, 5 (1996).CrossRefGoogle Scholar
  19. 19.
    V. Ball, A. Bentaleb, J. Hemmerle, J.-C. Voegel, and P. Schaaf, Langmuir 12, (1996).Google Scholar
  20. 20.
    C. Calonder, Y. Tie, and P. R. van Tassel, Proc. Natl. Acad. Sci. U.S.A. 98, 10664 (2001).CrossRefGoogle Scholar
  21. 21.
    M. Kind and C. Wöll, Prog. Surf. Sci. 84, 230 (2009).CrossRefGoogle Scholar
  22. 22.
    E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, and G. M. Whitesides, Langmuir 17, 6336 (2001).CrossRefGoogle Scholar
  23. 23.
    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).CrossRefGoogle Scholar
  24. 24.
    S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint, and M. Grunze, Langmuir 19, 1880 (2003).CrossRefGoogle Scholar
  25. 25.
    R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan, and G. M. Whitesides, J. Am. Chem. Soc. 122, 8303 (2000).CrossRefGoogle Scholar
  26. 26.
    R. G. Chapman, E. Ostuni, L. Yan, and G. M. Whitesides, Langmuir 16, 6927 (2000).CrossRefGoogle Scholar
  27. 27.
    S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003).CrossRefGoogle Scholar
  28. 28.
    A. J. Pertsin, M. Grunze, and I. A. Garbuzova, J. Phys. Chem. B 102, 4918 (1998).CrossRefGoogle Scholar
  29. 29.
    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).CrossRefGoogle Scholar
  30. 30.
    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).CrossRefGoogle Scholar
  31. 31.
    K. Prime and G. Whitesides, Science 252, 1164 (1991).CrossRefGoogle Scholar
  32. 32.
    B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Biomacromolecules 3, 1038 (2002).CrossRefGoogle Scholar
  33. 33.
    Poly(ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, edited by J. M. Harris (Plenum, New York, 1992), Vol. 43, pp. 233–234.Google Scholar
  34. 34.
    E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, Langmuir 17, 5605 (2001).CrossRefGoogle Scholar
  35. 35.
    B. Prakash, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 403, 567 (2000).CrossRefGoogle Scholar
  36. 36.
    S. Kunzelmann, G. J. Praefcke, and C. Herrmann, Methods Enzymol. 404, 512 (2005).CrossRefGoogle Scholar
  37. 37.
    G. J. K. Praefcke, S. Kloep, U. Benscheid, H. Lilie, B. Prakash, and C. Herrmann, J. Mol. Biol. 344, 257 (2004).CrossRefGoogle Scholar
  38. 38.
    G. J. K. Praefcke and H. T. McMahon, Nat. Rev. Mol. Cell Biol. 5, 133 (2004).CrossRefGoogle Scholar
  39. 39.
    A. Ghosh, G. J. K. Praefcke, L. Renault, A. Wittinghofer, and C. Herrmann, Nature (London) 440, 101 (2006).CrossRefGoogle Scholar
  40. 40.
    K. Scheffzek, M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer, Science 277, 333 (1997).CrossRefGoogle Scholar
  41. 41.
    Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).CrossRefGoogle Scholar
  42. 42.
    S. Xu and G. Liu, Langmuir 13, 127 (1997).CrossRefGoogle Scholar
  43. 43.
    D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5, 491 (2010).CrossRefGoogle Scholar
  44. 44.
    M. Meyers and K. Chawla, Mechanical Behaviors of Materials, 01st ed (Prentice-Hall, Upper Saddle River, NJ, 1999), Sec. 13.10, pp. 570–580.Google Scholar
  45. 45.
    S. C. Gill and P. H. von Hippel, Anal. Biochem. 182, 319 (1989).CrossRefGoogle Scholar
  46. 46.
    See supplementary material at E-BJIOBN-5-303004 for the chemical structure of the used thiols (Fig. 1) and the QCM multiple frequency and dissipation data (Fig. 2) used for the calculation of the thickness of the adsorbed protein films.Google Scholar
  47. 47.
    T. Vöpel, A. Syguda, N. Britzen-Laurent, S. Kunzelmann, M.-B. Lüdemann, C. Dovengerds, M. Stürzl, and C. Herrmann, J. Mol. Biol. 400, 63 (2010).CrossRefGoogle Scholar
  48. 48.
    T. Vöpel, S. Kunzelmann, and C. Herrmann, FEBS Lett. 583, 1923 (2009).CrossRefGoogle Scholar
  49. 49.
    E. Ostuni, L. Yan, and G. M. Whitesides, Colloids Surf., B 15, 3 (1999).CrossRefGoogle Scholar

Copyright information

© American Vacuum Society 2010

Authors and Affiliations

  • Andreas Kerstan
    • 1
  • Tatjana Ladnorg
    • 2
  • Christian Grunwald
    • 3
  • Tobias Vöpel
    • 4
  • Denise Zacher
    • 5
  • Christian Herrmann
    • 6
  • Christof Wöll
    • 7
  1. 1.Department of Physical Chemistry IUniversity of BochumBochumGermany
  2. 2.Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute of BiochemistryJ. Wolfgang Goethe-UniversityFrankfurtGermany
  4. 4.Department of Physical Chemistry IUniversity of BochumBochumGermany
  5. 5.Department of Anorganic Chemistry IIUniversity of BochumBochumGermany
  6. 6.Department of Physical Chemistry IUniversity of BochumBochumGermany
  7. 7.Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations