Advertisement

Biointerphases

, Volume 4, Issue 3, pp 43–46 | Cite as

Interfacial rheological properties of recombinant spider-silk proteins

  • Cyrille Vézy
  • Kevin D. Hermanson
  • Thomas Scheibel
  • Andreas R. Bausch
Open Access
Article

Abstract

Freestanding protein films are interesting for many applications ranging from microencapsulation to tissue engineering. Here, the authors use interfacial rheology to characterize the adsorption kinetics and the rheology of spider-silk films formed at an oil water interface. The high surface activity of the engineered spider-silk proteins results in a fast formation of highly stable films, which can be modified by the addition of phosphate ions to the solution.

References

  1. 1.
    K. D. Hermanson, D. Huemmerich, T. Scheibel, and A. R. Bausch, Adv. Mater. (Weinheim, Ger.) 19, 1810 (2007).CrossRefGoogle Scholar
  2. 2.
    K. D. Hermanson, M. B. Harasim, T. Scheibel, and A. R. Bausch, Phys. Chem. Chem. Phys. 9, 6442 (2007).CrossRefGoogle Scholar
  3. 3.
    G. B. Sukhorukov, A. Fery, M. Brumen, and H. Möhwald, Phys. Chem. Chem. Phys. 6, 4078 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Quilliet, C. Zoldesi, C. Riera, A. van Blaaderen, and A. Imhof, Eur. Phys. J. E 27, 13 (2008).CrossRefGoogle Scholar
  5. 5.
    M. A. Bos and T. van Vliet, Adv. Colloid Interface Sci. 91, 437 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Cicuta, E. J. Stancik, and G. G. Fuller, Phys. Rev. Lett. 90, 236101 (2003).CrossRefGoogle Scholar
  7. 7.
    C. J. Beverung, C. J. Radke, and H. W. Blanch, Biophys. Chem. 81, 59 (1999).CrossRefGoogle Scholar
  8. 8.
    F. S. Ariola, A. Krishnan, and E. A. Vogler, Biomaterials 27, 3404 (2006).CrossRefGoogle Scholar
  9. 9.
    P. Erni, P. Fischer, E. J. Windhab, V. Kusnezov, H. Stettin, and J. Lauger, Rev. Sci. Instrum. 74, 4916 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Erni, E. J. Windhab, R. Gunde, M. Graber, B. Pfister, A. Parker, and P. Fischer, Biomacromolecules 8, 3458 (2007).CrossRefGoogle Scholar
  11. 11.
    V. G. Babak, J. Desbrières, V. E. Tikhonov, Colloids Surf., A 255, 119 (2005).CrossRefGoogle Scholar
  12. 12.
    T. Scheibel, Microb. Cell Fact. 3, 14 (2004).CrossRefGoogle Scholar
  13. 13.
    D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, and T. Scheibel, Biochemistry 43, 13604 (2004).CrossRefGoogle Scholar
  14. 14.
    T. S. C. Vendrely and T. Scheibel, Macromol. Biosci. 7, 401 (2007).CrossRefGoogle Scholar
  15. 15.
    C. Semmrich, R. J. Larsen, and A. R. Bausch, Soft Matter 4, 1675 (2008).CrossRefGoogle Scholar
  16. 16.
    U. Slotta, M. Tammer, F. Kremer, P. Koelsch, and T. Scheibel, Supramol. Chem. 18, 465 (2006).CrossRefGoogle Scholar
  17. 17.
    X. Peng, Z. Shao, X. Chen, D. P. Knight, P. Wu, and F. Vollrath, Biomacromolecules 6, 302 (2005).CrossRefGoogle Scholar
  18. 18.
    H. Teramoto and M. Miyazawa, Biomacromolecules 6, 2049 (2005).CrossRefGoogle Scholar
  19. 19.
    D. Huemmerich, U. Slotta, and T. Scheibel, Appl. Phys. A: Mater. Sci. Process. 82, 219 (2006).CrossRefGoogle Scholar
  20. 20.
    J. M. Gosline, P. A. Guerette, C. S. Ortlepp, and K. N. Savage, J. Exp. Biol. 202, 3295 (1999).Google Scholar
  21. 21.
    J. L. Courthaudon, E. Dickinson, and W. W. Christie. J. Agric. Food Chem. 39, 1365 (1991).CrossRefGoogle Scholar
  22. 22.
    E. Dickinson, Colloids Surf., B 20, 197 (2001).CrossRefGoogle Scholar

Copyright information

© American Vacuum Society 2009

Authors and Affiliations

  • Cyrille Vézy
    • 1
  • Kevin D. Hermanson
    • 2
  • Thomas Scheibel
    • 3
  • Andreas R. Bausch
    • 1
  1. 1.UnileverTrumbull
  2. 2.Lehrstuhl für BiomaterialienUniversität BayreuthBayreuthGermany
  3. 3.E27 Lehrstuhl für BiophysikTechnische Universität MünchenGarchingGermany

Personalised recommendations