Biointerphases

, Volume 4, Issue 2, pp FA45–FA49 | Cite as

Stimuli-responsive command polymer surface for generation of protein gradients

  • Leonid Ionov
  • Nikolay Houbenov
  • Alexander Sidorenko
  • Manfred Stamm
  • Sergiy Minko
Open Access
Article

Abstract

Mixed polyelectrolyte brushes with a composition gradient were used as a platform for fabrication of stimuli-responsive command surfaces to control the generation of concentration gradients of adsorbed protein molecules. Switching between homogeneously adsorbed protein layers and adsorbed layers with protein concentration gradients was achieved by changing the pH of protein aqueous solutions. Protein adsorption and the direction of the adsorption gradient were tuned and also turned off and on or reversed by tuning the proton concentration in the pH range 4.0–8.6.

References

  1. 1.
    F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007).CrossRefGoogle Scholar
  2. 2.
    P. Roach, D. Eglin, K. Rohde, and C. C. Perry, J. Mater. Sci. Mater. Med. 18, 1263 (2007).CrossRefGoogle Scholar
  3. 3.
    J. McGuire and V. Krisdhasima, Food Technol. 45, 92 (1991).Google Scholar
  4. 4.
    A. G. Shard and P. E. Tomlins, Regen. Med. 1, 789 (2006).CrossRefGoogle Scholar
  5. 5.
    R. G. Nuzzo, Nature Mater. 2, 207 (2003).CrossRefGoogle Scholar
  6. 6.
    A. I. Yaropolov and B. A. Kuznetsov, Adv. Biosens. 3, 31 (1995).Google Scholar
  7. 7.
    J. D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers (Plenum, New York, 1985).Google Scholar
  8. 8.
    T. Reintjes, J. Tessmar, and A. Goepferich, J. Drug Delivery Sci. Techn. 18, 15 (2008).Google Scholar
  9. 9.
    Y.-P. Jiao and F.-Z. Cui, Biomed. Mater. 2, R24 (2007).CrossRefGoogle Scholar
  10. 10.
    F. Fang and I. Szleifer, Proc. Natl. Acad. Sci. 103, 5769 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Ishihara, Materia 46, 468 (2007).Google Scholar
  12. 12.
    Y. Mei, J. T. Elliott, J. R. Smith, K. J. Langenbach, T. Wu, C. Xu, K. L. Beers, E. J. Amis, and L. Henderson, J. Biomed. Mater. Res. 79A, 974 (2006).CrossRefGoogle Scholar
  13. 13.
    R. R. Bhat, B. N. Chaney, J. Rowley, A. Liebmann-Vinson, and J. Genzer, Adv. Mater. (Weinheim, Ger.) 17, 2802 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Riepl, M. Oestblom, I. Lundstroem, S. C. T. Svensson, G. Van der Denier, W. Arnoud, O. M. Schaeferling, and B. Liedberg, Langmuir 21, 1042 (2005).CrossRefGoogle Scholar
  15. 15.
    L. Ionov, M. Stamm, and S. Diez, Nano Lett. 6, 1982 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Ionov, M. Stamm, and S. Diez, Nano Lett. 5, 1910 (2005).CrossRefGoogle Scholar
  17. 17.
    J. C. Meredith, A. Karim, and E. J. Amis, MRS Bull. 27, 330 (2002).CrossRefGoogle Scholar
  18. 18.
    D. Julthongpiput, W. Zhang, J. F. Douglas, A. Karim, and M. J. Fasolka, Soft Mater. 3, 613 (2007).CrossRefGoogle Scholar
  19. 19.
    I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann, and E. Delamarche, Langmuir 16, 9125 (2000).CrossRefGoogle Scholar
  20. 20.
    J. E. Butler, L. Ni, R. Nessler, K. S. Joshi, M. Suter, B. Rosenberg, J. Chang, W. R. Brown, and L. A. Cantarero, J. Immunol. Methods 150, 77 (1992).CrossRefGoogle Scholar
  21. 21.
    A. V. Cairo, J. E. Gestwicki, M. Kanai, and L. L. Kiessling, J. Am. Chem. Soc. 124, 1615 (2002).CrossRefGoogle Scholar
  22. 22.
    I. Caelen, H. Gao, and H. Sigrist, Langmuir 18, 2463 (2002).CrossRefGoogle Scholar
  23. 23.
    S. Krämer, H. Xie, J. Gaff, J. R. Williamson, A. G. Tkachenko, N. Nouri, D. A. Feldheim, and D. L. Feldheim, J. Am. Chem. Soc. 126, 5388 (2004).CrossRefGoogle Scholar
  24. 24.
    L. Pardo, W. C. Wilson, J. Boland, and T. Boland, Langmuir 19, 1462 (2003).CrossRefGoogle Scholar
  25. 25.
    K. A. Fosser and R. G. Nuzzo, Anal. Chem. 75, 5775 (2003).CrossRefGoogle Scholar
  26. 26.
    J. Genzer and R. R. Bhat, Langmuir 24, 2294 (2008).CrossRefGoogle Scholar
  27. 27.
    I. Luzinov, S. Minko, and V. Tsukruk, Soft Mater. 4, 714 (2008).CrossRefGoogle Scholar
  28. 28.
    T. P. Russell, Science 297, 964 (2002).CrossRefGoogle Scholar
  29. 29.
    N. Nath and A. Chilkoti, Adv. Mater. (Weinhem, Ger.) 14, 1243 (2002).CrossRefGoogle Scholar
  30. 30.
    I. Luzinov, S. Minko, and V. Tsukruk, Prog. Polym. Sci. 29, 635 (2004).CrossRefGoogle Scholar
  31. 31.
    S. Minko, Polym. Rev. 46, 397 (2006).Google Scholar
  32. 32.
    B. Zhao, W. J. Brittain, W. S. Zhou, and S. Z. D. Cheng, J. Am. Chem. Soc. 122, 2407 (2000).CrossRefGoogle Scholar
  33. 33.
    A. Sidorenko, S. Minko, K. Schenk-Meuser, H. Duschner, and M. Stamm, Langmuir 15, 8349 (1999).CrossRefGoogle Scholar
  34. 34.
    R. Lupitskyy, Y. Roiter, C. Tsitsilianis, and S. Minko, Langmuir 21, 8591 (2005).CrossRefGoogle Scholar
  35. 35.
    35A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, and J. Aizenberg, Science 315, 487 (2007).CrossRefGoogle Scholar
  36. 36.
    N. Houbenov, S. Minko, and M. Stamm, Macromolecules 36, 5897 (2003).CrossRefGoogle Scholar
  37. 37.
    A. Synytska, M. Stamm, S. Diez, and L. Ionov, Langmuir 23, 5205 (2007).CrossRefGoogle Scholar
  38. 38.
    Y. Roiter and S. Minko, J. Am. Chem. Soc. 47, 15688 (2007).Google Scholar
  39. 39.
    Y. Roiter and S. Minko, J. Phys. Chem. B 111, 8597 (2007).CrossRefGoogle Scholar
  40. 40.
    N. P. Shusharina and P. Linse, Eur. Phys. J. E 4, 399 (2001).CrossRefGoogle Scholar
  41. 41.
    N. P. Shusharina and P. Linse, Eur. Phys. J. E 6, 147 (2001).CrossRefGoogle Scholar
  42. 42.
    L. Ionov, N. Houbenov, A. Sidorenko, I. Luzinov, S. Minko, and M. Stamm, Langmuir 20, 9916 (2004).CrossRefGoogle Scholar
  43. 43.
    K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, and I. Luzinov, Macromolecules 36, 6519 (2003).CrossRefGoogle Scholar
  44. 44.
    L. Ionov, A. Sidorenko, M. Stamm, S. Minko, B. Zdyrko, V. Klep, and I. Luzinov, Macromolecules 37, 7421 (2004).CrossRefGoogle Scholar
  45. 45.
    J. Draper, I. Luzinov, S. Minko, I. Tokarev, and M. Stamm, Langmuir 20, 4064 (2004).CrossRefGoogle Scholar
  46. 46.
    L. Ionov, B. Zdyrko, A. Sidorenko, S. Minko, V. Klep, and I. Luzinov, Macromol. Rapid Commun. 25, 360 (2004).CrossRefGoogle Scholar
  47. 47.
    S. Minko, S. Patil, V. Datsyuk, F. Simon, K. J. Eichhorn, M. Motornov, D. Usov, I. Tokarev, and M. Stamm, Langmuir 18, 289 (2002).CrossRefGoogle Scholar
  48. 48.
    A. Wittemann and M. Ballauff, Phys. Chem. Chem. Phys. 8, 5269 (2006).CrossRefGoogle Scholar
  49. 49.
    C. A. Haynes, E. Sliwinsky, and W. Norde, J. Colloid Interface Sci. 164, 394 (1994).CrossRefGoogle Scholar
  50. 50.
    G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, Biomacromolecules 1, 674 (2000).CrossRefGoogle Scholar
  51. 51.
    D. S. Salloum and J. B. Schlenoff, Biomacromolecules 5, 1089 (2004).CrossRefGoogle Scholar

Copyright information

© American Vacuum Society 2009

Authors and Affiliations

  • Leonid Ionov
    • 1
  • Nikolay Houbenov
    • 2
  • Alexander Sidorenko
    • 3
  • Manfred Stamm
    • 2
  • Sergiy Minko
    • 4
  1. 1.Max-Planck-Institute of Molecular Cell Biology and GeneticsDresdenGermany
  2. 2.Leibniz Institute of Polymer Research Dresden e.VDresdenGermany
  3. 3.Department of Chemistry and BiochemistryUniversity of the Sciences in PhiladelphiaPhiladelphiaGermany
  4. 4.Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB)Clarkson UniversityPotsdam

Personalised recommendations