Biointerphases

, Volume 3, Issue 2, pp FA117–FA124 | Cite as

Membrane composition-mediated protein-protein interactions

  • Benedict J. Reynwar
  • Markus Deserno
Open Access
Article

Abstract

The authors investigate membrane composition-mediated interactions between proteins adsorbed onto a two-component lipid bilayer close to critical demixing using coarse-grained molecular dynamics simulations and a phenomenological Ginzburg-Landau theory. The simulations consist of three-bead lipids and platelike proteins, which adsorb onto the membrane by binding preferentially to one of the two lipid species. The composition profile around one protein and the pair correlation function between two proteins are measured and compared to the analytical predictions. The theoretical framework is applicable to any scalar field embedded in the membrane, and although in this work the authors treat flat membranes, the methodology extends readily to curved geometries. Neglecting fluctuations, both lipid composition profile and induced protein pair potential are predicted to follow a zeroth order modified Bessel function of the second kind with the same characteristic decay length. These predictions are consistent with our molecular dynamics simulations, except that the interaction range is found to be larger than the single profile correlation length.

References

  1. 1.
    S. J. Singer and G. L. Nicolson, Science 175, 720 (1972).CrossRefGoogle Scholar
  2. 2.
    D. A. Brown and E. London, Biochem. Biophys. Res. Commun. 240, 1 (1997).CrossRefGoogle Scholar
  3. 3.
    K. Simons and E. Ikonen, Nature (London) 387, 569 (1997).CrossRefGoogle Scholar
  4. 4.
    D. A. Brown and E. London, J. Membr. Biol. 164, 103 (1998).CrossRefGoogle Scholar
  5. 5.
    D. A. Brown and E. London, Annu. Rev. Cell Dev. Biol. 14, 111 (1998).CrossRefGoogle Scholar
  6. 6.
    D. A. Brown and E. London, J. Biol. Chem. 275, 17221 (2000).CrossRefGoogle Scholar
  7. 7.
    S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 89, 268101 (2002).CrossRefGoogle Scholar
  8. 8.
    S. L. Veatch and S. L. Keller, Biophys. J. 85, 3074 (2003).CrossRefGoogle Scholar
  9. 9.
    T. Baumgart, S. T. Hess, and W. W. Webb, Nature (London) 425, 821 (2003).CrossRefGoogle Scholar
  10. 10.
    S. L. Veatch, I. V. Polozov, K. Gawrisch, and S. L. Keller, Biophys. J. 86, 2910 (2004).CrossRefGoogle Scholar
  11. 11.
    S. L. Veatch and S. L. Keller, Phys. Rev. Lett. 94, 148101 (2005).CrossRefGoogle Scholar
  12. 12.
    G. W. Feigenson, Annu. Rev. Biophys. Biomol. Struct. 36, 63 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka, B. A. Baird, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 104, 3165 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Fan, M. Sammalkorpi, and M. Haataja, Phys. Rev. Lett. 100, 178102 (2008).CrossRefGoogle Scholar
  15. 15.
    J. Gomez, F. Sagues, and R. Reigada, Phys. Rev. E 77, 021907 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Kusumi et al., Annu. Rev. Biophys. Biomol. Struct. 34, 351 (2005).CrossRefGoogle Scholar
  17. 17.
    O. G. Mouritsen and M. Bloom, Biophys. J. 46, 141 (1984).CrossRefGoogle Scholar
  18. 18.
    D. R. Fattal and A. Ben Shaul, Biophys. J. 65, 1795 (1993).CrossRefGoogle Scholar
  19. 19.
    H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, and S. Safran, Biophys. J. 71, 648 (1996).CrossRefGoogle Scholar
  20. 20.
    C. Nielsen, M. Goulian, and O. S. Andersen, Biophys. J. 74, 1966 (1998).CrossRefGoogle Scholar
  21. 21.
    S. May and A. Ben Shaul, Biophys. J. 76, 751 (1999).CrossRefGoogle Scholar
  22. 22.
    S. May and A. Ben Shaul, Phys. Chem. Chem. Phys. 2, 4494 (2000).CrossRefGoogle Scholar
  23. 23.
    T. Gil and J. H. Ipsen, Phys. Rev. E 55, 1713 (1997).CrossRefGoogle Scholar
  24. 24.
    T. Gil, M. C. Sabra, J. H. Ipsen, and O. G. Mouritsen, Biophys. J. 73, 1728 (1997).CrossRefGoogle Scholar
  25. 25.
    T. Gil, J. H. Ipsen, and C. F. Tejero, Phys. Rev. E 57, 3123 (1998).CrossRefGoogle Scholar
  26. 26.
    T. Gil, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, and M. J. Zuckermann, Biochim. Biophys. Acta 1376, 245 (1998).Google Scholar
  27. 27.
    S. May, D. Harries, and A. Ben Shaul, Biophys. J. 79, 1747 (2000).CrossRefGoogle Scholar
  28. 28.
    S. May, D. Harries, and A. Ben Shaul, Phys. Rev. Lett. 89, 268102 (2002).CrossRefGoogle Scholar
  29. 29.
    E. C. Mbamala, A. Ben-Shaul, and S. May, Biophys. J. 88, 1702 (2004).CrossRefGoogle Scholar
  30. 30.
    M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 22, 145 (1993).CrossRefGoogle Scholar
  31. 31.
    M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 23, 155 (1993).CrossRefGoogle Scholar
  32. 32.
    J.-M. Park and T. C. Lubensky, J. Phys. I France 6, 1217 (1996).CrossRefGoogle Scholar
  33. 33.
    J. B. Fournier and P. G. Dommersnes, Europhys. Lett. 39, 681 (1997).CrossRefGoogle Scholar
  34. 34.
    T. Weikl, M. Kozlov, and W. Helfrich, Phys. Rev. E 57, 6988 (1998).CrossRefGoogle Scholar
  35. 35.
    P. G. Dommersnes, J. B. Fournier, and P. Galatola, Europhys. Lett. 42, 233 (1998).CrossRefGoogle Scholar
  36. 36.
    P. Dommersnes and J.-B. Fournier, Eur. Phys. J. B 12, 9 (1999).CrossRefGoogle Scholar
  37. 37.
    M. S. Turner and P. Sens, Biophys. J. 76, 564 (1999).CrossRefGoogle Scholar
  38. 38.
    V. Marchenko and C. Misbah, Eur. Phys. J. E 8, 477 (2002).Google Scholar
  39. 39.
    J.-B. Fournier, P. Dommersnes, and P. Galatola, C. R. Biologies 326, 467 (2003).CrossRefGoogle Scholar
  40. 40.
    D. Bartolo and J. Fournier, Eur. Phys. J. E 11, 141 (2003).CrossRefGoogle Scholar
  41. 41.
    A. Evans, M. Turner, and P. Sens, Phys. Rev. E 67, 041907 (2003).CrossRefGoogle Scholar
  42. 42.
    T. Weikl, Eur. Phys. J. E 12, 265 (2003).CrossRefGoogle Scholar
  43. 43.
    P. Sens and M. Turner, Biophys. J. 86, 2049 (2004).CrossRefGoogle Scholar
  44. 44.
    M. M. Müller, M. Deserno, and J. Guven, Europhys. Lett. 69, 482 (2005).CrossRefGoogle Scholar
  45. 45.
    M. Müller, M. Deserno, and J. Guven, Phys. Rev. E 72, 061407 (2005).CrossRefGoogle Scholar
  46. 46.
    B. Reynwar, G. Illya, V. Harmandaris, M. Mller, K. Kremer, and M. Deserno, Nature (London) 447, 461 (2007).CrossRefGoogle Scholar
  47. 47.
    H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B51, 793 (1948).Google Scholar
  48. 48.
    M. E. Fisher, P. G. de Gennes, and C. R. Seances, C. R. Seances Acad. Sci., Ser. B 287, 207 (1978).Google Scholar
  49. 49.
    M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).Google Scholar
  50. 50.
    M. Krech, Phys. Rev. E 56, 1642 (1997).CrossRefGoogle Scholar
  51. 51.
    M. Krech, J. Phys.: Condens. Matter 11, R391 (1999).CrossRefGoogle Scholar
  52. 52.
    C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, Nature (London) 451, 172 (2008).CrossRefGoogle Scholar
  53. 53.
    R. R. Netz, Phys. Rev. Lett. 76, 3646 (1996).CrossRefGoogle Scholar
  54. 54.
    F. Jähnig, Biophys. J. 36, 329 (1981).CrossRefGoogle Scholar
  55. 55.
    R. Golestanian, M. Goulian, and M. Kardar, Europhys. Lett. 33, 241 (1996).CrossRefGoogle Scholar
  56. 56.
    P. G. Dommersnes and J. B. Fournier, Europhys. Lett. 46, 256 (1999).CrossRefGoogle Scholar
  57. 57.
    T. R. Weikl, Europhys. Lett. 54, 547 (2001).CrossRefGoogle Scholar
  58. 58.
    W. Helfrich and T. R. Weikl, Eur. Phys. J. E 5, 423 (2001).CrossRefGoogle Scholar
  59. 59.
    T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996).CrossRefGoogle Scholar
  60. 60.
    P. B. S. Kumar and M. Rao, Phys. Rev. Lett. 80, 2489 (1998).CrossRefGoogle Scholar
  61. 61.
    Y. Jiang, T. Lookman, and A. Saxena, Phys. Rev. E 61, R57 (2000).CrossRefGoogle Scholar
  62. 62.
    J. L. McWhirter, G. Ayton, and G. A. Voth, Biophys. J. 87, 3242 (2004).CrossRefGoogle Scholar
  63. 63.
    G. S. Ayton, J. L. McWhirter, P. McMurtry, and G. A. Voth, Biophys. J. 88, 3855 (2005).CrossRefGoogle Scholar
  64. 64.
    Q. Shi and G. A. Voth, Biophys. J. 89, 2385 (2005).CrossRefGoogle Scholar
  65. 65.
    A. Hanke, F. Schlesener, E. Eisenriegler, and S. Dietrich, Phys. Rev. Lett. 81, 1885 (1998).CrossRefGoogle Scholar
  66. 66.
    F. Schlesener, A. Hanke, and S. Dietrich, J. Stat. Phys. 110, 981 (2003).CrossRefGoogle Scholar
  67. 67.
    L. S. Brown, Ann. Phys. 126, 135 (1980).CrossRefGoogle Scholar
  68. 68.
    E. Eisenriegler and M. Stapper, Phys. Rev. B 50, 10009 (1994).CrossRefGoogle Scholar
  69. 69.
    J.-B. Fournier and C. Barbetta, Phys. Rev. Lett. 100, 078103 (2008).CrossRefGoogle Scholar
  70. 70.
    S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Perseus, Cambridge, 1994).Google Scholar
  71. 71.
    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (DoverMineola, NY, 2002).Google Scholar
  72. 72.
    J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Clarendon, Oxford, 1995).Google Scholar
  73. 73.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth, Washington, DC/Heinemann, Oxford, 1999).Google Scholar
  74. 74.
    R. Capovilla and J. Guven, J. Phys. A 35, 6233 (2002).CrossRefGoogle Scholar
  75. 75.
    R. Capovilla and J. Guven, J. Phys.: Condens. Matter 16, S2187 (2004).CrossRefGoogle Scholar
  76. 76.
    J. Guven, J. Phys. A 37, L313 (2004).CrossRefGoogle Scholar
  77. 77.
    M. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, NJ, 1976).Google Scholar
  78. 78.
    E. Kreyszig, Differential Geometry (Dover, New York, 1991).Google Scholar
  79. 79.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).Google Scholar
  80. 80.
    M. M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949).CrossRefGoogle Scholar
  81. 81.
    H.-J. Limbach, A. Arnold, B. A. Mann, and C. Holm, Comput. Phys. Commun. 174, 704 (2006).CrossRefGoogle Scholar
  82. 82.
    I. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).CrossRefGoogle Scholar
  83. 83.
    M. Müller, K. Katsov, and M. Schick, Phys. Rep. 434, 113 (2006).CrossRefGoogle Scholar
  84. 84.
    M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).CrossRefGoogle Scholar
  85. 85.
    G. Brannigan, L. C. L. Lin, and F. L. H. Brown, Eur. Biophys. J. 35, 104 (2006).CrossRefGoogle Scholar
  86. 86.
    A. Kolb and B. Dünweg, J. Chem. Phys. 111, 4453 (1999).CrossRefGoogle Scholar
  87. 87.
    I. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005).CrossRefGoogle Scholar
  88. 88.
    I. Prigogine and R. Defay, Chemical Thermodynamics (LongmansGreen, London, 1954).Google Scholar

Copyright information

© American Vacuum Society 2008

Authors and Affiliations

  • Benedict J. Reynwar
    • 1
  • Markus Deserno
    • 2
  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany
  2. 2.Department of PhysicsCarnegie Mellon UniversityPittsburgh15213

Personalised recommendations