Advertisement

Biointerphases

, Volume 3, Issue 3, pp FC23–FC39 | Cite as

Water at polar and nonpolar solid walls (Review)

  • Felix Sedlmeier
  • Jiri Janecek
  • Christian Sendner
  • Lyderic Bocquet
  • Roland R. Netz
  • Dominik Horinek
Open Access
Article

Abstract

Recent progress in simulating the properties of interfacial water at hard hydrophobic and hydrophilic surfaces is reviewed and compared to results for the air/water interface. The authors discuss static properties such as the equilibrium contact angle, the depletion layer thickness, and the orientation of interfacial water molecules. Relations between these properties, e.g., the relation between the contact angle and the thickness of the depletion layer which is experimentally observed on hydrophobic surfaces, are emphasized. For a hydrophilic sapphire surface, the authors discuss the influence of geometry and density of polar surface groups on the interfacial water structure. They discuss nonequilibrium effects arising in laminar shear flows, where the classic no-slip hydrodynamic boundary condition is violated at hydrophobic interfaces. They discuss the arising slip and relate it to static properties of the solid hydrophobic/water interface.

References

  1. 1.
    P. Ball, Chem. Rev. (Washington, D.C.) 108, 74 (2008).Google Scholar
  2. 2.
    E. W. Lang and H. D. Ludemann, Angew. Chem., Int. Ed. Engl. 21, 315 (1982).CrossRefGoogle Scholar
  3. 3.
    G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, J. Phys. Chem. B 102, 10469 (1998).CrossRefGoogle Scholar
  4. 4.
    S. Garde, G. Hummer, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, Phys. Rev. Lett. 77, 4966 (1996).CrossRefGoogle Scholar
  5. 5.
    G. Hummer, S. Garde, A. E. Garcia, M. E. Paulaitis, and L. R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 95, 1552 (1998).CrossRefGoogle Scholar
  6. 6.
    Y. Levy and J. N. Onuchic, Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Hummer, S. Garde, A. E. Garcia, A. Pohorille, and L. R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 93, 8951 (1996).CrossRefGoogle Scholar
  8. 8.
    D. Chandler, Nature (London) 437, 640 (2005).CrossRefGoogle Scholar
  9. 9.
    N. L. Jarvis and M. A. Scheiman, J. Phys. Chem. 72, 74 (1968).CrossRefGoogle Scholar
  10. 10.
    P. Atkins, Physical Chemistry (Oxford University Press, New York, 1998).Google Scholar
  11. 11.
    M. Paluch, Adv. Colloid Interface Sci. 84, 27 (2000).CrossRefGoogle Scholar
  12. 12.
    V. P. Sokhan and D. J. Tildesley, Mol. Phys. 92, 625 (1997).CrossRefGoogle Scholar
  13. 13.
    P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  14. 14.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 1991).Google Scholar
  15. 15.
    J. Genzer and K. Efimenko, Science 290, 2130 (2000).CrossRefGoogle Scholar
  16. 16.
    L. Feng et al., Adv. Mater. (Weinheim, Ger.) 14, 1857 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Love, L. Estroff, J. Kriebel, R. Nuzzo, and G. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).Google Scholar
  18. 18.
    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).CrossRefGoogle Scholar
  19. 19.
    T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003).CrossRefGoogle Scholar
  20. 20.
    A. Härtl,J. A. Garrido, S. Nowy, R. Zimmermann, C. Werner, D. Horinek, R. R. Netz, and M. Stutzmann, J. Am. Chem. Soc. 129, 1287 (2007).CrossRefGoogle Scholar
  21. 21.
    X. Li, J. Li, M. Eleftheriou, and R. Zhou, J. Am. Chem. Soc. 128, 12439 (2006).CrossRefGoogle Scholar
  22. 22.
    R. Steitz,T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A. C. Simonsen, and G. H. Findenegg, Langmuir 19, 2409 (2003).CrossRefGoogle Scholar
  23. 23.
    D. Schwendel,T. Hayashi, R. Dahint, A. Pertsin, M. Grunze, R. Steitz, and F. Schreiber, Langmuir 19, 2284 (2003).CrossRefGoogle Scholar
  24. 24.
    D. A. Doshi, E. B. Watkins, J. N. Israelachvili, and J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston, and V. Honkimaki, Proc. Natl. Acad. Sci. U.S.A. 103, 18401 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Maccarini et al., Langmuir 23, 598 (2007).CrossRefGoogle Scholar
  27. 27.
    K. Lum, D. Chandler, and J. Weeks, J. Phys. Chem. B 103, 4570 (1999).CrossRefGoogle Scholar
  28. 28.
    D. Huang and D. Chandler, J. Phys. Chem. B 106, 2047 (2002).CrossRefGoogle Scholar
  29. 29.
    S. I. Mamatkulov, P. K. Khabibullaev, and R. R. Netz, Langmuir 20, 4756 (2004).CrossRefGoogle Scholar
  30. 30.
    J. Janeçek and R. R. Netz, Langmuir 23, 8417 (2007).CrossRefGoogle Scholar
  31. 31.
    P. Koelsch et al., Colloids Surf., A 303, 110 (2007).CrossRefGoogle Scholar
  32. 32.
    B. M. Ocko, A. Dhinojwala, and J. Daillant, Phys. Rev. Lett. 101, 039601 (2008).CrossRefGoogle Scholar
  33. 33.
    C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, Phys. Rev. Lett. 94, 056102 (2005).CrossRefGoogle Scholar
  34. 34.
    O. I. Vinogradova and G. E. Yakubov, Langmuir 19, 1227 (2003).CrossRefGoogle Scholar
  35. 35.
    J.-L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).CrossRefGoogle Scholar
  36. 36.
    J.-L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).CrossRefGoogle Scholar
  37. 37.
    H. Stone, A. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).CrossRefGoogle Scholar
  38. 38.
    J. F. H. Stillinger and A. Ben-Naim, J. Chem. Phys. 47, 4431 (1967).CrossRefGoogle Scholar
  39. 39.
    C. A. Croxton, Phys. Lett. 74, 325 (1979).CrossRefGoogle Scholar
  40. 40.
    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Phys. Chem. 91, 4873 (1987).CrossRefGoogle Scholar
  41. 41.
    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 88, 3281 (1988).CrossRefGoogle Scholar
  42. 42.
    M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 90, 5211 (1989).CrossRefGoogle Scholar
  43. 43.
    C. Y. Lee, J. A. McCammon, and P. J. Rossky, J. Chem. Phys. 80, 4448 (1984).CrossRefGoogle Scholar
  44. 44.
    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).CrossRefGoogle Scholar
  45. 45.
    A. Wallqvist, Chem. Phys. Lett. 165, 437 (1990).CrossRefGoogle Scholar
  46. 46.
    J. R. Grigera, S. G. Kalko, and J. Fischbarg, Langmuir 12, 154 (1996).CrossRefGoogle Scholar
  47. 47.
    T. Hayashi, A. J. Pertsin, and M. Grunze, J. Chem. Phys. 117, 6271 (2002).CrossRefGoogle Scholar
  48. 48.
    K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J. Chem. Phys. 94, 2110 (1991).CrossRefGoogle Scholar
  49. 49.
    E. Spohr, J. Phys. Chem. 93, 6171 (1989).CrossRefGoogle Scholar
  50. 50.
    E. Spohr and K. Heinzinger, Chem. Phys. Lett. 123, 218 (1986).CrossRefGoogle Scholar
  51. 51.
    K. Heinzinger and E. Spohr, Electrochim. Acta 34, 1849 (1989).CrossRefGoogle Scholar
  52. 52.
    H. Shinto, T. Sakakibara, and K. Higashitani, J. Phys. Chem. B 102, 1974 (1998).CrossRefGoogle Scholar
  53. 53.
    H. Heller, M. Schaefer, and K. Schulten, J. Phys. Chem. 97, 8343 (1993).CrossRefGoogle Scholar
  54. 54.
    M. A. Wilson and A. Pohorille, J. Am. Chem. Soc. 116, 1490 (1994).CrossRefGoogle Scholar
  55. 55.
    O. Berger, O. Edholm, and F. Jahnig, Biophys. J. 72, 2002 (1997).CrossRefGoogle Scholar
  56. 56.
    S.-J. Marrink, O. Berger, P. Tieleman, and F. Jähnig, Biophys. J. 74, 931 (1998).CrossRefGoogle Scholar
  57. 57.
    A. Ismail, G. Grest, and M. Stevens, Langmuir 23, 8508 (2007).CrossRefGoogle Scholar
  58. 58.
    A. J. Pertsin, T. Hayashi, and M. Grunze, J. Phys. Chem. B 106, 12274 (2002).CrossRefGoogle Scholar
  59. 59.
    A. J. Pertsin and M. Grunze, Langmuir 16, 8829 (2000).CrossRefGoogle Scholar
  60. 60.
    A. Delville, J. Phys. Chem. 97, 9703 (1993).CrossRefGoogle Scholar
  61. 61.
    D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, New York, 2002).Google Scholar
  62. 62.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (D. Reidel Publishing Company, Dordrecht, 1981), p. 331.Google Scholar
  63. 63.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
  64. 64.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
  65. 65.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefGoogle Scholar
  66. 66.
    B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  67. 67.
    J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).CrossRefGoogle Scholar
  68. 68.
    S. Miyamoto and P. Kollman, J. Comput. Chem. 13, 952 (1992).CrossRefGoogle Scholar
  69. 69.
    I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).CrossRefGoogle Scholar
  70. 70.
    J. Janeçek, H. Krienke, and G. Schmeer, J. Phys. Chem. B 110, 6916 (2006).CrossRefGoogle Scholar
  71. 71.
    T. R. Jensen, M. Ø. Jensen, N. Reitzel, K. Balashev, G. H. Peters, K. Kjaer, and T. Bjørnholm, Phys. Rev. Lett. 90, 086101 (2003).CrossRefGoogle Scholar
  72. 72.
    M. Ø. Jensen, O. G. Mouritsen, and G. H. Peters, J. Chem. Phys. 120, 9729 (2004).CrossRefGoogle Scholar
  73. 73.
    A. Pertsin and M. Grunze, J. Chem. Phys. 125, 114707 (2006).CrossRefGoogle Scholar
  74. 74.
    M. J. de Ruijter, T. D. Blake, and J. De Coninck, Langmuir 15, 7836 (1999).CrossRefGoogle Scholar
  75. 75.
    J. S. Huang and W. W. Webb, J. Chem. Phys. 50, 3677 (1969).CrossRefGoogle Scholar
  76. 76.
    D. Beysens and M. Robert, J. Chem. Phys. 87, 3056 (1987). or]77 D. M.Huang, C. Sendner, D. Horinek, R. R. Netz, and L. Bocquet (unpublished).CrossRefGoogle Scholar
  77. 78.
    W. R. P. Scott et al., J. Phys. Chem. A 103, 3596 (1999).CrossRefGoogle Scholar
  78. 79.
    W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).CrossRefGoogle Scholar
  79. 80.
    W. L. Jorgensen, J. Phys. Chem. 90, 1276 (1986).CrossRefGoogle Scholar
  80. 81.
    K. C. Hass, W. F. Schneider, A. Curioni, and W. Andreoni, J. Phys. Chem. B 104, 5527 (2000). or]82M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, (unpublished).CrossRefGoogle Scholar
  81. 83.
    P. Jungwirth and D. J. Tobias, Chem. Rev. (Washington, D.C.) 106, 1259 (2006).Google Scholar
  82. 84.
    T. M. Chang and L. X. Dang, Chem. Rev. (Washington, D.C.) 106, 1305 (2006).Google Scholar
  83. 85.
    J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).Google Scholar
  84. 86.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  85. 87.
    W. D. Cornell et al., J. Am. Chem. Soc. 117, 5179 (1995).CrossRefGoogle Scholar
  86. 88.
    J. Alejandre, D. J. Tildesley, and G. A. Chapela, J. Chem. Phys. 102, 4574 (1995).CrossRefGoogle Scholar
  87. 89.
    D. Paschek, J. Chem. Phys. 120, 6674 (2004).CrossRefGoogle Scholar
  88. 90.
    D. Horinek and R. R. Netz, Phys. Rev. Lett. 99, 226104 (2007).CrossRefGoogle Scholar
  89. 91.
    D. Horinek, A. Serr, D. J. Bonthuis, M. Boström, W. Kunz, and R. R. Netz, Langmuir 24, 1271 (2008).CrossRefGoogle Scholar
  90. 92.
    E. Lauga, M. P. Brenner, and H. A. Stone, in Handbook of Experimental Fluid Dynamics, edited by C. Tropea, A. Yarin, and J. F. Foss(Springer, New York, 2005).Google Scholar
  91. 93.
    L. Bocquet and J. L. Barrat, Soft Matter 3, 685 (2007).CrossRefGoogle Scholar
  92. 94.
    J. Chowdhary and B. Ladanyi, J. Phys. Chem. B 110, 15442 (2006).CrossRefGoogle Scholar
  93. 95.
    M. L. Berkowitz and K. Raghavan, Langmuir 7, 1042 (1991).CrossRefGoogle Scholar
  94. 96.
    A. Serr, D. Horinek, and R. R. Netz, J. Am. Chem. Soc. 130, 12408 (2008).CrossRefGoogle Scholar
  95. 97.
    D. Horinek et al., Proc. Natl. Acad. Sci. U.S.A. 105, 2842 (2008).CrossRefGoogle Scholar

Copyright information

© American Vacuum Society 2008

Authors and Affiliations

  • Felix Sedlmeier
    • 1
  • Jiri Janecek
    • 1
    • 2
  • Christian Sendner
    • 1
  • Lyderic Bocquet
    • 1
    • 3
  • Roland R. Netz
    • 1
  • Dominik Horinek
    • 1
  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institute of Physical and Applied ChemistryBrno University of TechnologyBrnoCzech Republic
  3. 3.Laboratoire de Physique de la Matière Condensée et NanostructuresNRS and Université de LyonVilleurbanneFrance

Personalised recommendations