Skip to main content
Log in

A Rapid, Reliable Method to Isolate High Quality Endothelial RNA from Small Spatially-Defined Locations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Phenotypic heterogeneity of the endothelium has important implications for cell sourcing for cardiovascular tissue engineered devices and is fundamental to many cardiovascular diseases. A critical first step to identifying genetic regulators associated with particular endothelial phenotypes is reliable isolation of pure RNA from the cell subpopulations of interest. We present here a rapid method for the isolation of endothelial RNA from small spatially-defined locations, illustrated for two sides of the porcine aortic valve. Endothelial cells were retrieved from fresh tissue by freezing them to a glass substrate, from which they were lysed in guanidine thiocyanate buffer for RNA isolation. Valve endothelial cells isolated by this technique stained positively for CD31 and von Willebrand factor, consistent with an endothelial phenotype, with no evidence of contamination by α-smooth muscle actin-positive valve interstitial cells or CD45-positive leukocytes. RNA integrity was excellent in 80% of the samples, with over 100 ng of total RNA typically obtained from each side of the valve. This rapid method yields high quality pure endothelial RNA in sufficient quantities for amplification and subsequent use in device-, cell-, and location-specific transcriptional profiling by microarray technologies, and thus facilitates studies of spatial gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Ando, H., T. Kubin, W. Schaper, and J. Schaper. Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. Am. J. Physiol. 276:H1755-H1768, 1999.

    Google Scholar 

  2. Bertipaglia, B., F. Ortolani, L. Petrelli, G. Gerosa, M. Spina, P. Pauletto, D. Casarotto, M. Marchini, and S. Sartore. Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: The VESALIO Project (Vitalitate Exornatum Succedaneum Aorticum Labore Ingenioso Obtenibitur). Ann. Thorac. Surg. 75:1274-1282, 2003.

    Google Scholar 

  3. Bonner, W. A., H. R. Hulett, R. G. Sweet, and L. A. Herzenberg. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43:404-409, 1972.

    Google Scholar 

  4. Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 29:23-39, 2002.

    Google Scholar 

  5. Denis, C. V. Molecular and cellular biology of von Willebrand factor. Int. J. Hematol. 75:3-8, 2002.

    Google Scholar 

  6. Emmert-Buck, M. R., R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. Zhuang, S. R. Goldstein, R. A. Weiss, and L. A. Liotta. Laser capture microdissection. Science 274:998-1001, 1996.

    Google Scholar 

  7. Filip, D. A., A. Radu, and M. Simionescu. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59:310-320, 1986.

    Google Scholar 

  8. Helmbold, P., R. C. Nayak, W. C. Marsch, and I. M. Herman. Isolation and in vitro characterization of human dermal microvascular pericytes. Microvasc. Res. 61:160-165, 2001.

    Google Scholar 

  9. Johnson, C. M., and D. N. Fass. Porcine cardiac valvular endothelial cells in culture. A relative deficiency of fibronectin synthesis in vitro. Lab. Invest. 49:589-598, 1983.

    Google Scholar 

  10. Mikulowska-Mennis, A., T. B. Taylor, P. Vishnu, S. A. Michie, R. Raja, N. Horner, and S. T. Kunitake. High-quality RNA from cells isolated by laser capture microdissection. Biotechniques 33:176-179, 2002.

    Google Scholar 

  11. Mohler, E. R., 3rd, M. K. Chawla, A. W. Chang, N. Vyavahare, R. J. Levy, L. Graham, and F. H. Gannon. Identification and characterization of calcifying valve cells from human and canine aortic valves. J. Heart Valve Dis. 8:254-260, 1999.

    Google Scholar 

  12. Paranya, G., S. Vineberg, E. Dvorin, S. Kaushal, S. J. Roth, E. Rabkin, F. J. Schoen, and J. Bischoff. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am. J. Pathol. 159:1335-1343, 2001.

    Google Scholar 

  13. Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, Jr., and P. F. Davies. Coexisting proin-flammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U. S. A. 101:2482-2487, 2004.

    Google Scholar 

  14. Polacek, D. C., A. G. Passerini, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, S. Powell, H. Bischof, H. Winkler, C. J. Stoeckert, Jr., and P. F. Davies. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol. Genomics 13:147-156, 2003.

    Google Scholar 

  15. Stagliano, N. E., A. J. Carpino, J. S. Ross, and M. Donovan. Vascular gene discovery using laser capture microdissection of human blood vessels and quantitative PCR. Ann. N. Y. Acad. Sci. 947:344-349, 2001.

    Google Scholar 

  16. Sumpio, B. E., J. T. Riley, and A. Dardik. Cells in focus: Endothelial cell. Int. J. Biochem. Cell Biol. 34:1508-1512, 2002.

    Google Scholar 

  17. Taylor, P. M., S. P. Allen, and M. H. Yacoub. Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J. Heart Valve Dis. 9:150-158, 2000.

    Google Scholar 

  18. Van Gelder, R. N., M. E. von Zastrow, A. Yool, W. C. Dement, J. D. Barchas, and J. H. Eberwine. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. U. S. A. 87:1663-1667, 1990.

    Google Scholar 

  19. Warren, B. A. A method for the production of “en face” preparations one cell in thickness. J. R. Microsc. Soc. 85:407-413, 1965.

    Google Scholar 

  20. Watt, S. M., S. E. Gschmeissner, and P. A. Bates. PECAM-1: Its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk. Lymphoma 17:229-244, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, C.A., Zilberberg, J. & Davies, P.F. A Rapid, Reliable Method to Isolate High Quality Endothelial RNA from Small Spatially-Defined Locations. Annals of Biomedical Engineering 32, 1453–1459 (2004). https://doi.org/10.1114/B:ABME.0000042360.57960.2b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000042360.57960.2b

Navigation