Skip to main content
Log in

A Model for Mechanotransduction in Cardiac Muscle: Effects of Extracellular Matrix Deformation on Autocrine Signaling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a computational model and analysis of the dynamic behavior of epidermal growth factor receptor (EGFR) signaling in cardiac muscle tissue, with the aim of exploring transduction of mechanical loading into cellular signaling that could lead to cardiac hypertrophy. For this purpose, we integrated recently introduced models for ligand dynamics within compliant intercellular spaces and for the spatial dynamics of intracellular signaling with a positive feedback autocrine circuit. These kinetic models are here considered in the setting of a tissue consisting of cardiomyocytes and blood capillaries as a structural model for the myocardium. We show that autocrine EGFR signaling can be induced directly by mechanical deformation of the tissue and demonstrate the possibility of self-organization of signaling that is anisotropic on the tissue level and can reflect anisotropy of the mechanical deformation. These predictions point to the potential capabilities of the EGFR autocrine signaling circuit in mechanotransduction and suggest a new perspective on the cardiac hypertrophic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Asakura, M., M. Kitakaze, S. Takashima, Y. Liao, F. Ishikura, T. Yoshinaka, H. Ohmoto, K. Node, K. Yoshino, H. Ishiguro, H. Asanuma, S. Sanada, Y. Matsumura, H. Takeda, S. Beppu, M. Tada, M. Hori, and S. Higashiyama. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nat. Med. 8:35-40, 2002.

    Google Scholar 

  2. Brown, G. C., and B. N. Kholodenko. Spatial gradients of cellular phospho-proteins. FEBS Lett. 457:452-454, 1999.

    Google Scholar 

  3. Daub, H., F. U. Weiss, C. Wallasch, and A. Ullrich. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557-560, 1996.

    Google Scholar 

  4. Diaz Rodriguez, E., J. C. Montero, A. Esparis Ogando, L. Yuste, and A. Pandiella. Extracellular signal-regulated kinase phos-phorylates tumor necrosis factor alpha-converting enzyme at threonine 735: A potential role in regulated shedding. Mol. Biol. Cell 13:2031-2044, 2002.

    Google Scholar 

  5. Ferrell, J. E., Jr. Howresponses get more switch-like as you move down a protein kinase cascade. Trends Biochem. Sci. 22:288-289, 1997.

    Google Scholar 

  6. Fujino, T., N. Hasebe, M. Fujita, K. Takeuchi, J. Kawabe, K. Tobise, S. Higashiyama, N. Taniguchi, and K. Kikuchi. Enhanced expression of heparin-binding EGF-like growth factor and its receptor in hypertrophied left ventricle of spontaneously hypertensive rats. Cardiovasc. Res. 38:365-374, 1998.

    Google Scholar 

  7. Gechtman, Z., J. L. Alonso, G. Raab, D. E. Ingber, and M. Klagsbrun. The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol. Chem. 274:28828-28835, 1999.

    Google Scholar 

  8. Gierer, A., and H. Meinhardt. A theory of biological pattern formation. Kybernetik 12:30-39, 1972.

    Google Scholar 

  9. Goldbeter, A., and D. E. Koshland, Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. U.S.A. 78:6840-6844, 1981.

    Google Scholar 

  10. Huang, C.-Y. F., and J. E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U.S.A. 93:10078-10083, 1996.

    Google Scholar 

  11. Hunter, J. J., and K. R. Chien. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341:1276-1283, 1999.

    Google Scholar 

  12. Kholodenko, B. N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267:1583-1588, 2000.

    Google Scholar 

  13. Kholodenko, B. N. MAP kinase cascade signaling and endocytic trafficking: A marriage of convenience? Trends Cell Biol. 12:173-177, 2002.

    Google Scholar 

  14. Kholodenko, B. N., O. V. Demin, G. Moehren, and J. B. Hoek. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274:30169-30181, 1999.

    Google Scholar 

  15. Langlois, W. J., T. Sasaoka, A. R. Saltiel, and J. M. Olefsky. Negative feedback regulation and desensitization of insulin-and epidermal growth factor-stimulated p21ras activation. J. Biol. Chem. 270:25320-25323, 1995.

    Google Scholar 

  16. Levy, D., R. J. Garrison, D. D. Savage, W. B. Kannel, and W. P. Castelli. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 322:1561-1566, 1990.

    Google Scholar 

  17. Liao, J. K. Shedding growth factors in cardiac hypertrophy. Nat. Med. 8:20-21, 2002.

    Google Scholar 

  18. Maly, I. V., H. S. Wiley, and D. A. Lauffenburger. Self-organization of polarized cell signaling via autocrine circuits: Computational model analysis. Biophys. J. 86:10-22, 2004.

    Google Scholar 

  19. Montero, J. C., L. Yuste, E. Diaz Rodriguez, A. Esparis Ogando, and A. Pandiella. Mitogen-activated protein kinase-dependent and-independent routes control shedding of trans-membrane growth factors through multiple secretases. Biochem. J. 363:211-221, 2002.

    Google Scholar 

  20. Postma, M., and P. J. M. Van Haastert. A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys. J. 81:1314-1323, 2001.

    Google Scholar 

  21. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. New York: Cambridge University Press, 1992.

    Google Scholar 

  22. Pribyl, M., C. B. Muratov, and S. Y. Shvartsman. Discrete models of autocrine cell communication in epithelial layers. Biophys. J. 84:3624-3635, 2003.

    Google Scholar 

  23. Pribyl, M., C. B. Muratov, and S. Y. Shvartsman. Long-range signal transmission in autocrine relays. Biophys. J. 84:883-896, 2003.

    Google Scholar 

  24. Rebsamen, M. C., J. F. Arrighi, C. E. Juge-Aubry, M. B. Vallotton, and U. Lang. Epidermal growth factor induces hypertrophic responses and Stat5 activation in rat ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 32:599-610, 2000.

    Google Scholar 

  25. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103:211-225, 2000.

    Google Scholar 

  26. Shah, B. H., and K. J. Catt. A central role of EGF receptor transactivation in angiotensin II-induced cardiac hypertrophy. Trends Pharmacol. Sci. 24:239-244, 2003.

    Google Scholar 

  27. Shampine, L. F., and M. W. Reichelt. The Matlab ODE suite. SIAM J. Sci. Comput. 18:1-22, 1997.

    Google Scholar 

  28. Shvartsman, S. Y., M. P. Hagan, A. Yacoub, P. Dent, H. S. Wiley, and D. A. Lauffenburger. Autocrine loops with positive feedback enable context dependent cell signaling. Am. J. Physiol. Cell Physiol. 282:C545-C559, 2002.

    Google Scholar 

  29. Shvartsman, S. Y., C. B. Muratov, and D. A. Lauffenburger. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129:2577-2589, 2002.

    Google Scholar 

  30. Shvartsman, S. Y., H. S. Wiley, W. M. Deen, and D. A. Lauffenburger. Spatial range of autocrine signaling: Modeling and computational analysis. Biophys. J. 81:1854-1867, 2001.

    Google Scholar 

  31. Thomas, W. G., Y. Brandenburger, D. J. Autelitano, T. Pham, H. Qian, and R. D. Hannan. Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ. Res. 90:135-142, 2002.

    Google Scholar 

  32. Tschumperlin, D. J., G. Dai, I. V. Maly, T. Kikuchi, L. H. Laiho, A. K. McVittie, K. J. Haley, C. M. Lilly, P. T. C. So, D. A. Lauffenburger, R. D. Kamm, and J. M. Drazen. Mechanotransduction via growth factor shedding into a compliant extracellular space. Nature 429:83-86, 2004.

    Google Scholar 

  33. Turing, A. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. B 237:37-72, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maly, I.V., Lee, R.T. & Lauffenburger, D.A. A Model for Mechanotransduction in Cardiac Muscle: Effects of Extracellular Matrix Deformation on Autocrine Signaling. Annals of Biomedical Engineering 32, 1319–1335 (2004). https://doi.org/10.1114/B:ABME.0000042221.61633.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000042221.61633.23

Navigation