Skip to main content
Log in

Three-Dimensional, Quantitative Analysis of Desmin and Smooth Muscle Alpha Actin Expression During Angiogenesis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Angiogenic therapies have been designed for many pathological conditions, but when used as a single therapy, the clinical results have fallen short of expectations. In addition, strategies for vascularizing engineered tissues have been unsuccessful in promoting the formation of an extensive, stable vasculature. Recent evidence suggests that mural cells play a critical role in the success of these approaches, but our current understanding of the function of mural cells in the microvasculature is incomplete. We studied the three-dimensional spatial and temporal kinetics of the mural cell markers desmin and smooth muscle alpha actin during angiogenesis in an in vivo fibrin gel model. The results led to the following conclusions: (1) desmin and smooth muscle alpha actin positive cells are present during the initial development of vessel sprouts; (2) the presence of these cells in the microvasculature is not always an indicator of vessel stability; and (3) the mural cell markers desmin and smooth muscle alpha actin exhibit differential staining patterns during vessel formation. These findings shed new light on the complexity of the relationship between mural cells and the formation of a mature, stable microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abramsson, A., O. Berlin, H. Papayan, D. Paulin, M. Shani, and C. Betsholtz. Analysis of mural cell recruitment to tumor vessels. Circulation 105:112–117, 2002.

    Article  Google Scholar 

  2. Benjamin, L. E., D. Golijanin, A. Itin, D. Pode, and E. Keshet. Selective ablation of immature blood vessels in established tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103:159–165, 1999.

    Google Scholar 

  3. Benjamin, L. E., I. Hemo, and E. Keshet. A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598, 1998.

    Google Scholar 

  4. Bondjers, C., M. Kalen, M. Hellstrom, S. J. Scheidl, A. Abramsson, O. Renner, P. Lindahl, H. Cho, J. Kehrl, and C. Betsholtz. Transcriptional profiling of platelet-derived growth factor-B-deficient mice identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am. J. Pathol. 162:721–729, 2003.

    Google Scholar 

  5. Brey, E. M., T.W. King, C. Johnston, L.V. McIntire, G. P. Reece, and C. W. Patrick, Jr. A technique for quantitative 3D imaging of microvascular structure. Microvasc. Res. 63:279–294, 2002.

    Article  Google Scholar 

  6. Currie, L. J., J. R. Sharpe, and R. Martin. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review. Plast. Reconstr. Surg. 108:1713–1726, 2001.

    Article  Google Scholar 

  7. Darland, D. C., and P. D'Amore. Cell-cell interactions in vascular development. Curr. Top. Dev. Biol. 52:107–149, 2001.

    Article  Google Scholar 

  8. Davis, G. E., and C. W. Camarillo. An alpha 2 beta 1 integrindependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224:39–51, 1996.

    Article  Google Scholar 

  9. Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak. Fibrin containing gels induce angiogenesis implications for tumor stroma generation and wound healing. Lab. Invest. 57:673–686, 1987.

    Google Scholar 

  10. Egginton, S., and M. Gerritsen. Lumen formation: In vivo versus in vitro observations. Microcirculation 10:45–61. 2003.

    Article  Google Scholar 

  11. Egginton, S., A. L. Zhou, M. D. Brown, and O. Hudlicka. The role of pericytes in controlling angiogenesis in vivo. Adv. Exp. Med. Biol. 476:81–99, 2000.

    Google Scholar 

  12. Frid, M. G.,V. A. Kale, and K. R. Stenmark. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: In vitro analysis. Circ. Res. 90:1189–1196, 2002.

    Article  Google Scholar 

  13. Gee, M. S., W. N. Procopio, S. Makonnen, M. D. Feldman, N.M Yeilding, and W. M. Lee. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am. J. Pathol. 162:183–193, 2003.

    Google Scholar 

  14. Gerritsen, M. E., R. Soriano, S. Yang, C. Zlot, G. Ingle, K. Toy, and P. M. Williams. Branching out: A molecular fingerprint of endothelial differentiation into tube-like structures generated by affymetrix oligonucleotide arrays. Microcirculation 10:63–81, 2003.

    Article  Google Scholar 

  15. Hellstrom, M., M. Kalen, P. Lindalh, A. Abramsson, and C. Betsholtz. Role of PDGF-B and PDGF-βin recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055, 1999.

    Google Scholar 

  16. Hirschi, K. K., and M. A. Goodell. Common origins of blood and blood vessels in adults? Differentiation 68:186–192, 2001.

    Article  Google Scholar 

  17. Hirschi, K. K., S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D'Amore. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84:298–305, 1999.

    Google Scholar 

  18. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med. 7:987–989, 2001.

    Article  Google Scholar 

  19. Masaki, I., Y. Yonemitsu, A. Yamashita, S. Sata, M. Tanii, K. Komori, K. Nakagawa, X. Hou, Y. Nagai, M. Hasegawa, K. Sugimachi, and K. Sueishi. Angiogenic gene therapy for experimental critical limb ischemia acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ. Res. 90:966–973, 2002.

    Article  Google Scholar 

  20. Morikawa, S., P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain, and D. M. McDonald. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160:985–1000, 2000.

    Google Scholar 

  21. Orlidge, A., and P. A. D'Amore. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455–1462, 1987.

    Article  Google Scholar 

  22. Ponce, A. M., and R. J. Price. Angiogenic stimulus determines the positioning of pericytes within capillary sprouts in vivo. Microvasc. Res. 65:45–48, 2003.

    Article  Google Scholar 

  23. Powell, D. W., R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada, and A. B. West. Myofibroblasts. I. Paracrine cells in health and disease. Am. J. Physiol. (Cell Physiol.) 46:C1–C19, 1999.

    Google Scholar 

  24. Ramsauer, M., J. Kunz, D. Krause, and R. Dermietzel. Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions. J. Cereb. Blood Flow Metab. 18:1270–1281, 1998.

    Article  Google Scholar 

  25. Simper, D., P. G. Stalbeorger, C. J. Panetta, S. Wang, and N. M. Caplice. Smooth muscle progenitor cells in human blood. Circulation 106:1199–1204, 2002.

    Article  Google Scholar 

  26. Skalak, T. C., and R. J. Price. The role of mechanical stress in microvascular remodeling. Microcirculation 3:143–165, 1996.

    Google Scholar 

  27. Sundberg, C., M. Kowanetz, L. F. Brown, M. Detmar, and H. F. Dvorak. Stable expression of angiopoietin-1 and other markers by cultured pericytes: Phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82:387–401, 2002.

    Google Scholar 

  28. Taniyama, Y., R. Morishita, K. Hiraoka, M. Aoki, H. Nakagami, K. Yamasaki, K. Matsumoto, T. Nakamura, Y. Kaneda, and T. Ogihara. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: Molecular mechanisms of delayed angiogenesis in diabetes. Circulation 104:2344–2350, 2001.

    Google Scholar 

  29. Uemura, A., M. Ogawa, M. Hirashima, T. Fujiwara, S. Koyama, H. Takagi, Y. Honda, S. J. Wiegand, G. D. Yancopoulos, and S. Nishikawa. Recombinant angiopoietin-1 restores higher order architecture of growing vessels in mice in the absence of mural cells. J. Clin. Invest. 110:1619–1628, 2002.

    Article  Google Scholar 

  30. Woods, R. P., S. R. Cherry, and J. C. Mazziotta. Rapid automated algorithm for aligning and reslicingPETimages. J. Comp. Assist. Tomogr. 16:620–633, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brey, E.M., McIntire, L.V., Johnston, C.M. et al. Three-Dimensional, Quantitative Analysis of Desmin and Smooth Muscle Alpha Actin Expression During Angiogenesis. Annals of Biomedical Engineering 32, 1100–1107 (2004). https://doi.org/10.1114/B:ABME.0000036646.17362.c4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036646.17362.c4

Navigation