Skip to main content
Log in

Regional Myocardial Perfusion and Mechanics: A Model-Based Method of Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A new parametric model-based method has been developed that allows epicardial strain distributions to be computed on the left ventricular free wall in normal and ischemic myocardium and integrated with the regional distributions of anatomic and physiological measurements so that underlying relationships can be explored. An array of radiopaque markers was sewn on the anterior wall of the left ventricle (LV) in three anesthetized open-chest canines, and their positions were recorded using biplane video fluoroscopy before and 2 min after occlusion of the left anterior descending coronary artery. The three-dimensional (3D) anatomy of the LV and epicardial fiber angles were measured post-mortem using a 3D probe. A prolate spheroidal finite element model was fitted to the epicardial surface points (with <0.2 mm accuracy) and fiber angles (<5° error). Regional myocardial blood flows (MBFs) were measured using fluorescent microspheres and fitted into the model(<0.3 ml min−1 g−1 error). Epicardial fiber and cross-fiber strain distributions were computed by allowing the model to deform from end-diastole to end-systole according to the recorded motion of the surface markers. Systolic fiber strain varied from −0.05 to 0.01 within the region of the markers during baseline, and regional MBF varied from 1.5 to 2.0 min−1 g−1. During 2 min ischemia, regional MBF was less than 0.3 min−1 g−1 in the ischemic region and 1.0 ml min−1 g−1 in the nonischemic region, and fiber strain ranged from 0.05 in the central ischemic zone to −0.025 in the remote nonischemic tissue. This analysis revealed a zone of impaired fiber shortening extending into the normally perfused myocardium that was significantly wider at the base than the apex. A validation analysis showed that a regularizing function can be optimized to minimize both fitting errors and numerical oscillations in the computed strain fields. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 8710+e, 8759Wc, 8745-k

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng.25:96-111, 1997.

    Google Scholar 

  2. Costa, K. D. The structural basis of three-dimensional ventricular mechanics. La Jolla, CA: UC San Diego, PhD thesis, 1996.

    Google Scholar 

  3. Costa, K. D., P. J. Hunter, J. M. Rogers, J. M. Guccione, L. K. Waldman, and A. D. McCulloch. A three-dimensional finite element method for large elastic deformation of ventricular myocardium: II-prolate spheroidal coordinates. J. Biomech. Eng.118:464-472, 1996.

    Google Scholar 

  4. Gallagher, K. P., R. A. Gerren, M. Choy, M. C. Stirling, and R. C. Dysko. Subendocardial segment length shortening at lateral margin of ischemic myocardium in dogs. Am. J. Physiol.253:H826-H837, 1987.

    Google Scholar 

  5. Gallagher, K. P., R. A. Gerren, M. C. Stirling, M. Choy, R. C. Dysko, S. P. McManimon, and W. R. Dunham. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ. Res.58:570-583, 1986.

    Google Scholar 

  6. Gallagher, K. P., T. Kumada, J. A. Koziol, M. D. McKown, W. S. Kemper, and J. J. Ross. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation62:1266-1274, 1980.

    Google Scholar 

  7. Gallagher, K. P., M. C. Stirling, M. Choy, C. A. Szpunar, R. A. Gerren, M. J. Botham, and J. H. Lemmer. Dissociation between epicardial and transmural function during acute myocardial ischemia. Circulation71:1279-1291, 1985.

    Google Scholar 

  8. Glenny, R. W., S. Bernard, and M. Brinkley. Validation of fluorescently-labeled microspheres for measurement of regional organ perfusion. J. Appl. Physiol.74:2585-2597, 1993.

    Google Scholar 

  9. Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech.26:19-35, 1993.

    Google Scholar 

  10. Hunter, P. J., P. M. F. Nielsen, B. H. Smaill, I. J. LeGrice, and I. W. Hunter. An anatomical heart model with application to myocardial activation and ventricular mechanics. Crit. Rev. Biomed. Eng.20:403-426, 1992.

    Google Scholar 

  11. Kavanaugh, K. M., H. M. Brenner, K. P. Gallagher, and A. J. Buda. Effects of afterload alterations on the functional border zone measured with two-dimensional echocardiography during acute coronary occlusion. Am. Heart J.116:942-952, 1988.

    Google Scholar 

  12. LeGrice, I. J., P. J. Hunter, and B. H. Smaill. Laminar structure of the heart: a mathematical model. Am. J. Physiol.272:H2466-H2476, 1997.

    Google Scholar 

  13. MacKay, S. A., P. J. Potel, and J. M. Rubin. Graphics methods for tracking three-dimensional heart wall motion. Comput. Biomed. Res.15:455-472, 1982.

    Google Scholar 

  14. May-Newman, K., J. H. Omens, R. S. Pavelec, and A. D. McCulloch. Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ. Res.74:1166-1178, 1994.

    Google Scholar 

  15. McCulloch, A. D., and J. H. Omens. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech.24:539-548, 1991.

    Google Scholar 

  16. Nielsen, P. M. F., I. J. LeGrice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol.260:H1365-H1378, 1991.

    Google Scholar 

  17. Oosterhout, M. F. M., H. M. M. Willigers, R. S. Reneman, and F. W. Prinzen. Fluorescent microspheres to measure organ perfusion: validation of simplified sample processing technique. Am. J. Physiol.269:H725-H733, 1995.

    Google Scholar 

  18. Prinzen, F. W., T. Arts, A. P. G. Hoeks, and R. S. Reneman. Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflugers Arch.415:220-229, 1989.

    Google Scholar 

  19. Prinzen, F. W., T. Arts, G. J. van der Vusse, W. A. Coumans, and R. S. Reneman. Gradients in fiber shortening and metabolism across ischemic left ventricular wall. Am. J. Physiol.250:H255-H264, 1986.

    Google Scholar 

  20. Prinzen, F. W., and R. W. Glenny. Development in nonradioactive microsphere technique for blood flow measurement. Cardiovasc. Res.28:1467-1475, 1994.

    Google Scholar 

  21. Riggs, D., J. Guarnieri, and S. Addelman. Fitting straight lines when both variables are subject to error. Life Sci.22:1305-1360, 1978.

    Google Scholar 

  22. Streeter, D. D. J., and W. T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium-I. Cavity and wall geometry. Circ. Res.33:639-655, 1973.

    Google Scholar 

  23. Terzopoulos, D. Regulation of inverse visual problems involving discontinuities. IEEE Trans. Pattern. Anal. Mach. Intell.PAMI-8:413-423, 1986.

    Google Scholar 

  24. Throne, R. D., and L. G. Olson. The effects of errors in assumed conductivities and geometry on numerical solution to the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng.42:1192-1200, 1995.

    Google Scholar 

  25. Van Leuven, S. L., L. K. Waldman, and A. D. McCulloch. Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am. J. Physiol.267:H2348-H2362, 1994.

    Google Scholar 

  26. Waldman, L. K. Multidimensional measurements of regional strains in the intact heart. In: Theory of Heart: Biomechanic, Biophysics, and Non-linear Dynamics of Cardiac Function, edited by L. Glass, P. Hunter, and A. D. McCulloch. New York: Springer, 1991, pp. 145-174.

    Google Scholar 

  27. Waldman, L. K., and A. D. McCulloch. Nonhomogeneous ventricular wall strain: analysis of errors and accuracy. J. Biomech. Eng.115:497-502, 1993.

    Google Scholar 

  28. Waldman, L. K., D. Nosan, F. Villarreal, and J. W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res.63:550-562, 1988.

    Google Scholar 

  29. Young, A. A., and L. Axel. Three-dimensional motion and deformation of heart wall: estimation with spatial modulation of magnetization-a model-based approach. Radiology185:241-247, 1992.

    Google Scholar 

  30. Young, A. A., P. J. Hunter, and B. H. Smaill. Epicardial surface estimation from coronary angiograms. Comput. Vis. Graph. Image Process.47:111-127, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazhari, R., Omens, J.H., Waldman, L.K. et al. Regional Myocardial Perfusion and Mechanics: A Model-Based Method of Analysis. Annals of Biomedical Engineering 26, 743–755 (1998). https://doi.org/10.1114/1.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.74

Navigation