Skip to main content
Log in

Three-Dimensional Activation Mapping in Ventricular Muscle: Interpolation and Approximation of Activation Times

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Interpolation plays an important role in analyzing or visualizing any scalar field because it provides a means to estimate field values between measured sites. A specific example is the measurement of the electrical activity of the heart, either on its surface or within the muscle, a technique known as cardiac mapping, which is widely used in research. While three-dimensional measurement of cardiac fields by means of multielectrode needles is relatively common, the interpolation methods used to analyze these measurements have rarely been studied systematically. The present study addressed this need by applying three trivariate techniques to cardiac mapping and evaluating their accuracy in estimating activation times at unmeasured locations. The techniques were tetrahedron-based linear interpolation, Hardy's interpolation, and least-square quadratic approximation. The test conditions included activation times from both high-resolution simulations and measurements from canine experiments. All three techniques performed satisfactorily at measurement spacing ⩽ 2mm. At the larger interelectrode spacings typical in cardiac mapping (1 cm), Hardy's interpolation proved superior both in terms of statistical measures and qualitative reconstruction of field details. This paper provides extensive comparisons among the methods and descriptions of expected errors for each method at a variety of sampling intervals and conditions. © 1999 Biomedical Engineering Society.

PAC99: 8719Nn, 0260Ed, 8719Ff

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alfeld, P. In: Mathematical Methods in CAGD, edited by T. Lyche and L. L. Schumaker. New York: Academic, 1989, pp. 1–33.

    Google Scholar 

  2. Arisi, G., E. Macchi, S. Baruffi, S. Spaggiari, and B. Taccardi. Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ. Res. 52:706–715, 1983.

    Google Scholar 

  3. Atkinson, K. E. An Introduction to Numerical Analysis, 2nd ed. New York: Wiley, 1988.

    Google Scholar 

  4. Barnette, A. R., P. V. Bayly, S. Zhang, G. P. Walcott, R. E. Ideker, and W. M. Smith. Estimation of 3-D conduction velocity fields from cardiac mapping data. Comput. Cardiol. 25:605–608, 1998.

    Google Scholar 

  5. Barr, R. C., T. M. Gallie, and M. S. Spach. Automated production of contour maps for electrophysiology. I. Problem definition, solution strategy, and specification of geometric model. Comput. Biomed. Res. 13:142–153, 1980.

    Google Scholar 

  6. Bayly, P. V., E. E. Johnson, S. F. Idriss, R. E. Ideker, and W. M. Smith. Efficient electrode spacing for examining spatial organization during ventricular fibrillation. IEEE Trans. Biomed. Eng. 40:1060–1066, 1993.

    Google Scholar 

  7. Bayly, P. V., E. E. Johnson, P. D. Wolf, H. S. Greenside, W. M. Smith, and R. E. Ideker. A quantitative measurement of spatial order in ventricular fibrillation. J. Cardiovasc. Electrophysiol. 4:533–546, 1993.

    Google Scholar 

  8. Berbari, E. J., P. Lander, B. J. Scherlag, R. Lazzara, and D. B. Geselowitz. Ambiguities of epicardial mapping. J. Electrocardiol. Suppl. 24:16–20, 1991.

    Google Scholar 

  9. Blanchard, S. M., R. J. Damiano, W. M. Smith, R. E. Ideker, and J. W. Lowe. Interpolating unipolar epicardial potentials from electrodes separated by increasing distances. PACE 12:1938–1955, 1989.

    Google Scholar 

  10. Carlson, R. E., and T. A. Foley. The parameter R 2 in multiquadric interpolation. Comput. Math. Appl. 21:29–42, 1991.

    Google Scholar 

  11. Colli Franzone, P., L. Guerri, and B. Taccardi. Spread of excitation in a myocardial volume: Simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. J. Cardiovasc. Electrophysiol. 4:144–160, 1993.

    Google Scholar 

  12. Dyn, N.: Topics in Multivariate Approximation, edited by C. K. Chui, L. L. Schumaker, and F. I. Utreras. New York: 1987, pp. 47–61.

  13. El-Sherif, N., M. Chinushi, E. B. Caref, and M. Restivo. Electrophysiological mechanism of the characteristic electro-cardiographics morphology of Torsade de Points tachyarrhythmias in the long-QT syndrome: Detailed analysis of ventricular tridimensional activation patterns. Circulation 96:4392–4399, 1997.

    Google Scholar 

  14. Foley, T. A. Interpolation and approximation of 3-D and 4-D scattered data. Comput. Math. Appl. 13:711–740, 1987.

    Google Scholar 

  15. Foley, T. A., and H. Hagen. In: Surveys on Mathematics for Industry. Berlin: Springer, 1994, Vol. 4, pp. 71–84.

    Google Scholar 

  16. Franke, R. Scattered data interpolation: Test of some methods. Math. Comput. 38:181–200, 1982.

    Google Scholar 

  17. Frazier, D. W., W. Krassowska, P. S. Chen, P. D. Wolf, N. D. Danieley, M. W. Smith, and R. E. Ideker. Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium. Circ. Res. 63:135–146, 1988.

    Google Scholar 

  18. Frazier, D. W., W. Krassowska, P. S. Chen, P. D. Wolf, E. G. Dixon, M. W. Smith, and R. E. Ideker. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium. Circ. Res. 63:147–164, 1988.

    Google Scholar 

  19. Hardy, R. L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76:1905–1915, 1971.

    Google Scholar 

  20. Hardy, R. L. Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19:163–208, 1990.

    Google Scholar 

  21. Ideker, R. E., W. M. Smith, S. M. Blanchard, S. L. Reiser, E. V. Simpson, P. D. Wolf, and N. D. Danieley. The assumptions of isochronal cardiac mapping. PACE 12:456–478, 1989.

    Google Scholar 

  22. Ni, Q., R. S. MacLeod, R. L. Lux, and B. Taccardi. A novel interpolation method for electric potential fields in the heart during excitation. Ann. Biomed. Eng. 26:597–607, 1998.

    Google Scholar 

  23. Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365-H1378, 1991.

    Google Scholar 

  24. Pogwizd, S. M., M. Chung, and M. E. Cain. Termination of ventricular tachycardia in the human heart: Insights from three-dimensional mapping of nonsustained and sustained ventricular tachycardias. Circulation 95:2528–2540, 1997.

    Google Scholar 

  25. Pogwizd, S. M., and P. B. Corr. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ. Res. 61:352–371:1987.

    Google Scholar 

  26. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  27. Roberts, D. E., L. T. Hersh, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ. Res. 44:701–712, 1979.

    Google Scholar 

  28. Rogers, J. M., P. V. Baylay, R. E. Ideker, and W. M. Smith. Quantitative techniques for analyzing high-resolution cardiacmapping data. IEEE Eng. Med. Biol. Mag. 17:62–72, 1998.

    Google Scholar 

  29. Stead, S. E. Estimation of gradients from scattered data. Rocky Mt. J. Math. 14:265–279, 1984.

    Google Scholar 

  30. Taccardi, B., R. L. Lux, P. R. Ershler, R. S. MacLeod, T. J. Dustman, and N. Ingebrigtsen. Anatomical architecture and electrical activity of the heart. Acta Cardiol. LII:91–105, 1997.

    Google Scholar 

  31. Taccardi, B., E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation 90:3076–3090, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Q., MacLeod, R.S. & Lux, R.L. Three-Dimensional Activation Mapping in Ventricular Muscle: Interpolation and Approximation of Activation Times. Annals of Biomedical Engineering 27, 617–626 (1999). https://doi.org/10.1114/1.211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.211

Navigation