Annals of Biomedical Engineering

, Volume 31, Issue 10, pp 1182–1193 | Cite as

Effect of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model

  • Dalin Tang
  • Chun Yang
  • Shunichi Kobayashi
  • Jie Zheng
  • Raymond P. Vito


A nonlinear three-dimensional thick-wall model with fluid-structure interactions is introduced to simulate blood flow in carotid arteries with an asymmetric stenosis to quantify the effects of stenosis severity, eccentricity, and pressure conditions on blood flow and artery compression (compressive stress in the wall). Mechanical properties of the tube wall are measured using a thick-wall stenosis model made of polyvinyl alcohal hydrogel whose mechanical properties are close to that of carotid arteries. A hyperelastic Mooney–Rivlin model is used to implement the experimentally measured nonlinear elastic properties of the tube wall. A 36.5% pre-axial stretch is applied to make the simulation physiological. The Navier–Stokes equations in curvilinear form are used for the fluid model. Our results indicate that severe stenosis causes critical flow conditions, high tensile stress, and considerable compressive stress in the stenosis plaque which may be related to artery compression and plaque cap rupture. Stenosis asymmetry leads to higher artery compression, higher shear stress and a larger flow separation region. Computational results are verified by available experimental data. © 2003 Biomedical Engineering Society.

PAC2003: 8719Uv, 8710+e

Stroke Heart attack Plaque cap rupture Collapsible Finite difference Fluid-structure interaction Nonlinear elasticity Iterative Generalized finite difference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aoki, T., and D. N. Ku. Collapse of diseases arteries with eccentric cross section. J. Biomech. Eng. 26:133–142, 1993.Google Scholar
  2. 2.
    Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 1996.Google Scholar
  3. 3.
    Bathe, K. J. Theory and Modeling Guide. Watertown, MA: ADINA R & D, 2002, Vol. 1.Google Scholar
  4. 4.
    Bathe, M., and R. D. Kamm. A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J. Biomech. Eng. 121:361–369, 1999.Google Scholar
  5. 5.
    Beattie, D. The mechanics of heterogeneous arteries: Implications for human atherosclerosis. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 1996.Google Scholar
  6. 6.
    Beattie, D., C. Xu, R. P. Vito, S. Glagov, and M. C. Whang. Mechanical analysis of heterogeneous, atherosclerotic human aorta. J. Biomech. Eng. 120:602–607, 1998.Google Scholar
  7. 7.
    Burke, A. P., A. Farb, G. T. Malcom, Y. H. Liang, J. E. Smialek, and R. Virmani. Plaque rupture and sudden death related to exertion in men with coronary artery disease. J. Am. Med. Assoc. 281:921–926, 1999.Google Scholar
  8. 8.
    Cao, J., and S. E. Rittgers. Particle motion within models of stenosel internal carotid and left anterior descending coronary arteries. Ann. Biomed. Eng. 26:190–199, 1998.Google Scholar
  9. 9.
    Chaturani, P., and R. P. Samy. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology22:521–531, 1985.Google Scholar
  10. 10.
    Downing, J. M., and D. N. Ku. Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries. J. Biomech. Eng. 119:317–324, 1997.Google Scholar
  11. 11.
    Friedman, M. H. Arteriosclerosis research using vascular flow models: From 2D branches to compliant replicas. J. Biomech. Eng. 115:595–601, 1993.Google Scholar
  12. 12.
    Fung, Y. C. Biomechanics, Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.Google Scholar
  13. 13.
    Fung, Y. C. Biodynamics, Circulation, 2nd ed. New York: Springer, 1997.Google Scholar
  14. 14.
    Fuster, V. B., J. A. Stein, L. B. Ambrose, J. J. Badimon, and J. H. Chesebro. Atherosclerostic plaque rupture and thrombosis. Circulation82:II-47–II-59, 1990.Google Scholar
  15. 15.
    Hafner, C. D. Minimizing the risks of carotid endarterectomy. J. Vasc. Surg. 1:392–397, 1984.Google Scholar
  16. 16.
    Hayashi, K. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J. Biomech. Eng. 115:481–488, 1993.Google Scholar
  17. 17.
    Hughes, T. J. R., W. K. Liu, and T. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29:329–349, 1981.Google Scholar
  18. 18.
    Judd, R. M., and M. E. Mates. Flow through a stenosis in a compliant tube. Proceedings of the 2nd International Symposium on Biofluid Mechanics and Biorheology, Munich, Germany, 1989, edited by D. Liepsch. Berlin: Springer, pp. 417–423.Google Scholar
  19. 19.
    Kamm, R. D., and A. H. Shapiro. Unsteady flow in a collapsible tube subjected to external pressure or body force. J. Biomech. Eng. 95:1–78, 1979.Google Scholar
  20. 20.
    Kleiber, M. Handbook of Computational Solid Mechanics, New York: Springer, 1998.Google Scholar
  21. 21.
    Kobayashi, S., T. Horie, H. Morikawa, D. Tang, and D. N. Ku, Flow and compression in collapsible asymmetric stenosis models of arterial disease. Proceedings of 2001 International Mechanical Engineering Congress and Exposition, 2001. New York: American Society of Mechanical Engineers, 2001, BED-23141.Google Scholar
  22. 22.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.Google Scholar
  23. 23.
    Ku, D. N., D. P. Giddens, D. J. Phillips, and D. E. Strandness, Jr. Hemodynamics of the normal human carotid bifurcation: and studies. Ultrasound Med. Biol. 11:13–26, 1985.Google Scholar
  24. 24.
    Leuprecht, A., and K. Perktold. Computer simulation of non-Newtonian effect on blood flow in large arteries. Comput. Methods Biomech. Biomed. Eng. 4:149–163, 2001.Google Scholar
  25. 25.
    Liszka, T., and J. Orkisz. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11:83–95, 1980.Google Scholar
  26. 26.
    Loree, H. M., R. D. Kamm, C. M. Atkinson, and R. T. Lee. Turbulent pressure fluctuation on surface of model vascular stenosis. Am. J. Physiol. 261:H644–H650, 1991.Google Scholar
  27. 27.
    Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. 14:230–234, 1994.Google Scholar
  28. 28.
    Luo, X. Y., and T. J. Pedley. Flow limitation and multiple solutions of flow in collapsible channel. J. Fluid Mech. 420:301–324, 2000.Google Scholar
  29. 29.
    May, P., C. Arrouvel, M. Revol, J. M. Servant, and E. Vicaut. Detection of hemodynamic turbulence in experimental stenosis: An study in the rat carotid artery. J. Vasc. Res. 39:21–29, 2002.Google Scholar
  30. 30.
    McCord, B. M., and D. N. Ku. Mechanical rupture of the atherosclerostic plaque fibrous cap. Proceedings of the 1993 Bioengineering Conference, 1993; BED-Vol. 24:324–327.Google Scholar
  31. 31.
    Patankar, S. V. Numerical Heat Transfer and Fluid Flow. New York: Taylor and Francis, 1980.Google Scholar
  32. 32.
    Powell, B. E. Experimental measurements of flow through stenotic collapsible tubes. MS thesis, Georgia Institute of Technology, 1991.Google Scholar
  33. 33.
    Rittgers, S. E., Y. H. Yu, and J. T. Strony. Thrombus formation in moderate coronary stenosis using 2D-LDA. Proceedings of the Third World Congress of Biomechanics, 1998. Sapporo, Japan: World Congress of Biomechanics, p. 201.Google Scholar
  34. 34.
    Rugonyi, S., and K. J. Bathe. On finite element analysis of fluid flows fully coupled with structural interactions. Computational Methods Eng. Sci. 2:195–212, 2001.Google Scholar
  35. 35.
    Siebes, M., C. S. Campbell, and D. Z. D'Argenio. Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation. J. Biomech. Eng. 118:489–497, 1996.Google Scholar
  36. 36.
    Stergiopulos, N., J. E. Moore, Jr., A. Strassle, D. N. Ku, and J. J. Meister. Steady flow test and demonstration of collapse on models of compliant axisymmetric stenoses. Adv. Bioeng. 26:455–458, 1993.Google Scholar
  37. 37.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Steady flow and wall compression in stenotic arteries: A 3D thick-wall model with fluid-wall interactions. J. Biomech. Eng. 123:548–557, 2001.Google Scholar
  38. 38.
    Tang, D., C. Yang, J. Zheng, and R. P. Vito. Stress/strain analysis of arteries with stenotic plaques and lipid cores. Proceedings of the Fourth World Congress of Biomechanics, 2002 (in press).Google Scholar
  39. 39.
    Tang, D., C. Yang, and D. N. Ku. A 3D thin-wall model with fluid-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Comput. Struct. 72:357–377, 1999.Google Scholar
  40. 40.
    Tang, D., J. Yang, C. Yang, and D. N. Ku. A nonlinear axisymmetric model with fluid-wall interactions for viscous flows in stenotic elastic tubes. J. Biomech. Eng. 121:494–501, 1999.Google Scholar
  41. 41.
    Tang, D., C. Yang, S. Kobayashi, J. Zheng, and R. Vito. Effects of stenosis asymmetry and stiffness on blood flow and artery compression: A 3D FSI model. WPI Mathematical Sciences Department, Technical Report MS-06–02–20, 2002.Google Scholar
  42. 42.
    Tang, D., C. Yang, J. Zheng, and C. Yuan. MRI-based flow and stress analysis of human arterial plaques with lipid cores and calcifications. Proceedings of the Fourth International Conference on Fluid Mechanics. Beijing: Tsinghua University Press, 2003.Google Scholar
  43. 43.
    Toussaint, J. F., G. M. LaMuraglia, J. F. Southern, V. Fuster, and H. L. Kantor. MR images of lipid, fibrous, calcified, hemorrhagic and thrombotic components of human atherosclerosis. Circulation94:932–938, 1996.Google Scholar
  44. 44.
    Vaishnav, R. N., and J. Vossoughi. Incremental formulations in vascular mechanics. J. Biomech. Eng. 106:105–111, 1984.Google Scholar
  45. 45.
    Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.Google Scholar
  46. 46.
    Yamaguchi, T., N. Furuta, T. Nakayama, and T. Kobayashi. Computations of the fluid and wall mechanical interactions in arterial diseases. Adv. Bioeng. 31:197–198, 1995.Google Scholar
  47. 47.
    Yamaguchi, T., T. Kobayashi, and H. Liu. Fluid-wall interactions in the collapse and ablation of an atheromatous plaque in coronary arteries. Proceedings of the Third World Congress of Biomechanics, 1998, p. 20b.Google Scholar
  48. 48.
    Yamaguchi, T., T. Nakayama, and T. Kobayashi. Computations of the wall mechanical response under unsteady flows in arterial diseases. Adv. Bioeng. 33:369–370, 1996.Google Scholar
  49. 49.
    Young, D. F., and F. Y. Tsai. Flow characteristics in models of arterial stenoses. I. Steady flow. J. Biomech. 6:395–410, 1973.Google Scholar
  50. 50.
    Yuan, C., L. M. Mitsumori, K. W. Beach, and K. R. Maravilla. Special review: Carotid atherosclerotic plaque: Noninvasive MR characterization and identification of vulnerable lesions. Radiology221:285–299, 2001.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Dalin Tang
    • 1
  • Chun Yang
    • 2
  • Shunichi Kobayashi
    • 3
  • Jie Zheng
    • 4
  • Raymond P. Vito
    • 5
  1. 1.Mathematical Sciences DepartmentWorcester Polytechnic InstituteWorcester
  2. 2.Mathematics DepartmentBeijing Normal UniversityChina
  3. 3.Department of Functional Machinery and MechanicsShinshu UniversityNaganoJapan
  4. 4.Mallinkcrodt Institute of RadiologyWashington University School of MedicineSt. Louis
  5. 5.School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta

Personalised recommendations