Annals of Biomedical Engineering

, Volume 31, Issue 8, pp 950–961 | Cite as

Functionalized Biomicroelectromechanical Systems Sensors for Force Response Study at Local Adhesion Sites of Single Living Cells on Substrates

  • M. Taher A. Saif
  • Chad Randall Sager
  • Sean Coyer
Article

Abstract

We present a method of measuring force response of a single living cell, attached to a substrate, in situ, by a functionalized microelectromechanical systems sensor that applies local deformation on the cell. The sensor is a single crystal silicon microcantilever beam with prescribed shape and geometry, and is coated by a thin layer of fibronectin. It is brought in contact with a cell to form adhesion cites, and is then moved by a piezoactuator to deform the cell locally. The force is transmitted from the adhesion site(s) on the cantilever to the sites on the substrate through the cytoskeleton. The interaction force between the cell and the cantilever is measured from the deformation of the cantilever and its spring constant, which can be obtained by several independent means. The force and the cell deformation can be 10 s of nano-Newtons and micrometers, respectively. We demonstrate the method using two families of force sensors with spring constants of 18 and 0.4 nN/μm. Several cells, endothelial and fibroblast, are deformed by tens of micrometers until the adhesion sites failed. Their force–deformation response shows strong linearity. Several possible mechanisms are discussed to explain the linear response. © 2003 Biomedical Engineering Society.

PAC2003: 8780Fe, 0710Pz, 8716Gj, 8585+j

MEMS Cytoskeleton Microcantilever Fibronectin Endothelial cell Fibroblast cell Buckling Truss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block, S.Making light work with optical tweezers. Nature (London)360:493–495, 1992.Google Scholar
  2. 2.
    Bowen, W. R., N. Hilal, R. W. Lovitt, and C. J. Wright. Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids Surf., A136:231–234, 1998.Google Scholar
  3. 3.
    Breen, E. C.Mechanical strain increases type I collagen expression in pulmonary fibroblasts. J. Appl. Physiol.88:203–209, 2000.Google Scholar
  4. 4.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science276:1425–1428, 1997.Google Scholar
  5. 5.
    Chen, K.-D., Y.-S. Li, M. Kim, S. Li, S. Yuan, S. Chien, and J. Y.-J. Shyy. Mechanotransduction in response to shear stress. J. Biol. Chem.274:18393–18400, 1999.Google Scholar
  6. 6.
    Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J.75:1553–1572, 1998.Google Scholar
  7. 7.
    Chicurel, M. E., C. S. Chen, and D. E. Ingber. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol.10:232–239, 1998.Google Scholar
  8. 8.
    Clough, R. W., and J. Penzien. Dynamics of Structures. New York: McGraw-Hill, 1986, pp 137.Google Scholar
  9. 9.
    Crouch, C. J., H. W. Fowler, and R. E. Spier. The adhesion of animal cells to surfaces: The measurement of critical surface shear stress permitting attachment or causing detachment. J. Chem. Technol. Biotechnol.35B:273–281, 1985.Google Scholar
  10. 10.
    Easty, G. C., D. M. Easty, and E. J. Ambrose. Studies of cellular adhesiveness. Exp. Cell Res.19:539–548, 1960.Google Scholar
  11. 11.
    Evans, E., D. Berk, and A. Leung. Detachment of agglutinin-bonded red blood cells, I. Forces to rupture molecular-point attachments. Biophys. J.59:838–848, 1991.Google Scholar
  12. 12.
    Evans, E., D. Berk, A. Leung, and N. Mohandas. Detachment of agglutinin-bonded red blood cells, II. Mechanical energies to separate large contact areas. Biophys. J.59:849–860, 1991.Google Scholar
  13. 13.
    Florin, E.-L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand–receptor pairs. Science264:415–417, 1994.Google Scholar
  14. 14.
    Forrester, J. V., and J. M. Lackie. Adhesion of neutrophil leucocytes under conditions of flow. J. Cell. Sci.70:93–110, 1984.Google Scholar
  15. 15.
    Heidemann, S. R., S. Kaech, R. E. Buxbaum, and A. Matus. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol.145:109–122, 1999.Google Scholar
  16. 16.
    Helm, C. A., W. Knoll, and J. N. Israelachvili. Measurement of ligand–receptor interactions. Proc. Natl. Acad. Sci. U.S.A.88:8169–8173, 1991.Google Scholar
  17. 17.
    Horwitz, A. F.Integrins and health. Sci. Am.276:68–75, 1997.Google Scholar
  18. 18.
    Hwang, W. C., and R. E. Waugh. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys. J.72:2669–2678, 1997.Google Scholar
  19. 19.
    Ingber, D.How cells (might) sense microgravity. FASEB J.13:S3–S15, 1999.Google Scholar
  20. 20.
    Ingber, D. E.The architecture of life. Sci. Am.278(1):30–39, 1998.Google Scholar
  21. 21.
    Kaech, S., B. Ludin, and A. Matus. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron17:1189–1199, 1996.Google Scholar
  22. 22.
    Karila-Cohen, D., and S. P. Gabriel. Aspirin and prevention of cardiovascular risk. Rev. Med. Interne1:35s-40s, 2000.Google Scholar
  23. 23.
    Kirshner, M., and T. Mitchison. Beyond self-assembly: From microtubules to morphogenesis. Cell45:329–342, 1986.Google Scholar
  24. 24.
    Lauffenburger, D. A., and A. F. Horwitz. Cell Migration: A physically integrated molecular process. Cell84:359–369, 1996.Google Scholar
  25. 25.
    Li, X., and R. B. Nicklas. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J. Cell. Sci.110:537–545, 1997.Google Scholar
  26. 26.
    Markel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature (London)397:50–53, 1999.Google Scholar
  27. 27.
    Pickett-Heaps, J. D., A. Forer, and T. Spurck. Traction fiber: Towards a tensegral model of the spindle. Cell Motil. Cytoskeleton37:1–6, 1997.Google Scholar
  28. 28.
    Ra, H. J., C. Picart, H. Feng, H. L. Sweeney, and D. E. Discher. Muscle cell peeling from micropatterned collagen: Direct probing of focal and molecular properties of matrix adhesion. J. Cell. Sci.112:1425–1436, 1999.Google Scholar
  29. 29.
    Ruoslahti, E., and J. C. Reed. Anchorage dependence, integrins, and apoptosis. Cell77:477–478, 1994.Google Scholar
  30. 30.
    Sager, C., P. LeDuc, and T. Saif. adhesion studies of a single living bovine endothelial cell using MEMS sensor. Procedings of the 1st Annual International IEEE–EMBS Special Topic Conference on Microtechnologies in Medicine and Biology,Palais des Congres, Lyon, France, 12–14 October 2000, pp. 76–79.Google Scholar
  31. 31.
    Sager, C., T. Saif, and P. LeDuc. Adhesion Studies of Cells Using MEMS Sensors. Proceedings of the ASME Winter Annual Meeting, MEMS, 2000, Orlando, FL, 5–10 November 2000, Vol. 2, pp. 215–219.Google Scholar
  32. 32.
    Saif, M. T. A.On the capillary interaction between solid plates forming menisci on the surface of a liquid. J. Fluid Mech.473:321–347, 2002.Google Scholar
  33. 33.
    Saif, M. T. A., and N. C. MacDonald. A milli-Newton microloading device. Sens. Actuators A52:65–75, 1996.Google Scholar
  34. 34.
    Saif, M. T. A., and N. C. MacDonald. Planarity of large MEMS. J. Microelectromech. Syst.5:79–97, 1996.Google Scholar
  35. 35.
    Saif, M. T. A., and N. C. MacDonald. Measurement of forces and spring constants of micro instruments. Rev. Sci. Instrum.69:1410–1422, 1998.Google Scholar
  36. 36.
    Shao, J.-Y., and R. M. Hochmuth. Mechanical anchoring strength of L-selectin, β2 integrins, and CD 45 to neutrophil cytoskeleton and membrane. Biophys. J.77:587–596, 1999.Google Scholar
  37. 37.
    Shaw, K. A., Z. L. Zhang, and N. C. MacDonald. SCREAM-I: A single mask, single crystal silicon, reactive etching process for microelectromechanical structures. Sens. Actuators A40:63–70, 1994.Google Scholar
  38. 38.
    Sukharev, S. I., B. Martinac, V. Y. Arshavsky, and C. Kung. Two types of mechanosensitive channels in the Escherichia coli cell envelope: Solubilization and functional reconstitution. Biophys. J.65:177–183, 1993.Google Scholar
  39. 39.
    Van-Essen, D. C.A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature (London)385:313–318, 1997.Google Scholar
  40. 40.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science260:1124–1127, 1993.Google Scholar
  41. 41.
    Yamamoto, A., S. Mishima, N. Maruyama, and M. Sumita. A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials19:871–879, 1998.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • M. Taher A. Saif
    • 1
  • Chad Randall Sager
    • 1
  • Sean Coyer
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana–ChampaignUrbana

Personalised recommendations