Skip to main content
Log in

Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A bioresorbable, expandable poly(L-lactic acid) stent has been designed, based on a linear, continuous coil array principle, by which multiple furled lobes convert to a single lobe upon balloon expansion, without heating. Stent strength and compliance are sufficient to permit deployment by a conventional balloon angioplasty catheter. Several multiple lobe configurations were investigated, with expansion ratios ranging from 1.4 to 1.9 and expanded diameters ranging from 2.3 to 4.7 mm. Compression resistance of the expanded stent is dependent on fiber coil density and fiber ply. A range sufficient for endovascular service was obtained, with less than 4% elastic recoil in six day saline incubation studies. Surface plasma treatment with di(ethylene glycol) vinyl ether significantly reduced platelet adhesion in a 1 h porcine arteriovenous shunt model. Patency was maintained in one week implant studies in the porcine common femoral artery. However, a strong inflammatory response, and significant reduction of the vascular lumen were observed following two weeks implantation. The design principles and fabrication techniques for this bioresorbable stent are sufficiently versatile that a broad range of applications can be addressed. Much work remains to be done, including long-term evaluation of the inflammatory response, and of polymer degradation. The results of this study demonstrate the feasibility of expandable biodegradable stent design and deployment by conventional means. © 2003 Biomedical Engineering Society.

PAC2003: 8768+z, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, C. M., and H. G. Clark. Deformation characteristics of a bioabsorbable intravascular stent. Invest. Radiol.27:1020–1024, 1992.

    Google Scholar 

  2. Barstad, R. M., U. Orvim, M. J. Hamers, G. E. Tjonnfjord, F. R. Brosstad, and K. S. Sakariassen. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Thromb. Haemostasis75:827–832, 1996.

    Google Scholar 

  3. Blindt, R., K. M. Hoffmeister, H. Bienert, H. Pfannschmitt, G. Bartsch, H. Thissen, D. Klee, and J. Von Dahl. Development of a new biodegradable intravascular polymer stent with simultaneous incorporation of bioactive substances. Int. J. Artif. Organs22:843–853, 1999.

    Google Scholar 

  4. Clagett, G. P., and R. C. Eberhart. Artificial devices in clinical practice. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd ed., edited by R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman. Philadelphia, PA: Lippincott, 1994, Chap. 77, pp. 1486–1505.

    Google Scholar 

  5. De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken, J. Vandorpe, P. N. Lan, E. Schacht, J. Piessens, and H. De Geest. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc. Intervent. Radiol.18:227–232, 1995.

    Google Scholar 

  6. Dirschinger, J., A. Kastrati, and F. J. Neumann. Influence of balloon pressure during stent placement in native coronary arteries on early and late angiographic and clinical outcome: A randomized evaluation of high-pressure inflation. Circulation100:918–923, 1999.

    Google Scholar 

  7. Dollar, M. L., M. K. Sly, R. G. Credi, A. Constantinescu, C. C. Tsai CC, P. V. Kulkarni, G. P. Clagett, and R. C. Eberhart. Noninvasive quantification of platelet accumulation and release on indwelling venous catheters. ASAIO J.39:M268–M272, 1993.

    Google Scholar 

  8. Eberhart, R. C., S-H. Su, K. T. Nguyen, M. Zilberman, L. Tang, K. D. Nelson, and P. Frenkel. Bioresorbable polymeric stents: Current status and future prospects. (in press).

  9. Farb, A., G. Sangiorgi, A. J. Carter, V. M. Walley, W. D. Edwards, R. S. Schwartz, and R. Virmani. Pathology of acute and chronic coronary stenting in humans. Circulation99:44–52, 1999.

    Google Scholar 

  10. Grizzi, I., H. Garreau, S. Li, and M. Vert. Hydrolytic degradation of devices based on poly(DL-lactic acid size dependence). Biomaterials16:305–311, 1995.

    Google Scholar 

  11. Houdijk, W. P., K. S. Sakariassen, P. F. Nievelstein, and J. J. Sixma. Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III. J. Clin. Invest.75:531–540, 1985.

    Google Scholar 

  12. Karino, T., H. L. Goldsmith, M. Motomiya, S. Mabuchi, and Y. Sohara. Flow patterns in vessels of simple and complex geometries. Ann. N.Y. Acad. Sci.516:422–441, 1987.

    Google Scholar 

  13. Kinlough-Rathbone, R. L., and D. W. Perry. Prolonged expression of procoagulant activity of human platelets degranulated by thrombin. Thromb. Haemostasis74:958–961, 1995.

    Google Scholar 

  14. Labinaz, M., J. P. Zidar, R. S. Stack, and H. R. Phillips. Biodegradable stents: The future of interventional cardiology?J. Intervent. Cardiol.8:395–405, 1995.

    Google Scholar 

  15. Li, J., M. K. Sly, R. Chao, A. Constantinescu, P. V. Kulkarni, F. H. Wians, Jr., M. E. Jessen, and R. C. Eberhart. Transient adhesion of platelets in pump-oxygenator circuits: Influence of SMA and nitric oxide treatments. J. Biomater. Sci., Polym. Ed.10:235–246, 1999.

    Google Scholar 

  16. Morice, M., P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, and R. Falotico (RAVEL Study Group). A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med.346:1773–1780, 2002.

    Google Scholar 

  17. Morton, W. A., and R. D. Cumming. A technique for the elucidation of Virchow's triad. In: The Behavior of Blood and its Components at Interfaces. L. Vroman and E. F. Leonard, Eds. Ann. N.Y. Acad. Sci.283:477–493, 1977.

    Google Scholar 

  18. Nojiri, C., T. Okano, H. Koyanagi, S. Nakahama, K. D. Park, and S. W. Kim. protein adsorption on polymers: Visualization of adsorbed proteins on vascular implants in dogs. J. Biomater. Sci., Polym. Ed.4:75–88, 1992.

    Google Scholar 

  19. Park, K., F. W. Mao, and H. Park. Morphological characterization of surface-induced platelet activation. Biomaterials11:24–31, 1990.

    Google Scholar 

  20. Rechavia, E., M. C. Fishbein, and T. DeFrance. Temporary arterial stenting: Comparison to permanent stenting and conventional balloon injury in a rabbit carotid artery model. Cathet. Cardiovasc. Diagn.41:85–92, 1997.

    Google Scholar 

  21. Revak, S. D., C. G. Cochrane, B. N. Bouma, and J. H. Griffin. Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J. Exp. Med.147:719–729, 1978.

    Google Scholar 

  22. Richter, G. M., J. C. Palmaz, G. Noeldge, and F. Tio. Relationship between blood flow, thrombus, and neointima in stents. J. Vasc. Interv Radiol.10:598–604, 1999.

    Google Scholar 

  23. Rieu, R., P. Barragan, C. Masson, J. Fuseri, V. Garitey, M. Silvestri, P. Roquebert, and J. Sainsous. Radial force of coronary stents: A comparative analysis. Catheterization Cardiovasc Interv.46:380–391, 1999.

    Google Scholar 

  24. Talja, M., T. Valimaa, T. Tammela, A. Petas, and P. Tormala. Bioabsorbable and biodegradable stents in urology. J. Urol. (Baltimore)11:391–397, 1997.

    Google Scholar 

  25. Tamai, H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata. Initial and 6–month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation102:399–404, 2000.

    Google Scholar 

  26. Thakur, M. L., L. Walsh, H. L. Malech, and A. Gottschalk. Indium-111–labeled human platelets: Improved method, efficacy, and evaluation. J. Nucl. Med.22:381–385, 1981.

    Google Scholar 

  27. van Beusekom, H. M., D. M. Whelan, S. H. Hofma, S. C. Krabbendam, V. W. van Hinsbergh, P. D. Verdouw, and W. J. van der Giessen. Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries. J. Am. Coll. Cardiol.32:1109–1117, 1998.

    Google Scholar 

  28. Yamawaki, T., H. Shimokawa, T. Kozai, K. Miyata, T. Higo, E. Tanaka, K. Egashira, T. Shiraishi, H. Tamai, K. Igaki, and A. Takeshita. Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs. J. Am. Coll. Cardiol.32:780–786, 1998.

    Google Scholar 

  29. Ye, Y. W., C. Landau, J. E. Willard, G. Rajasubramanian, A. Moskowitz, S. Aziz, R. S. Meidell, and R. C. Eberhart. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann. Biomed. Eng.26:398–408, 1998.

    Google Scholar 

  30. Yuliang, J., H. Wu, R. B. Timmons, J. S. Jen, and F. E. Molock. Nonfouling surface produced by gas phase pulsed plasma polymerization of ultra-low-molecular-weight ethylene oxide containing monomer. Colloids Surf., B18:235–248, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, SH., Chao, R.Y.N., Landau, C.L. et al. Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties. Annals of Biomedical Engineering 31, 667–677 (2003). https://doi.org/10.1114/1.1575756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1575756

Navigation