Skip to main content
Log in

Analysis of Nitric Oxide Consumption by Erythrocytes in Blood Vessels using a Distributed Multicellular Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Multiple sets of experimental data have shown that the red blood cell (RBC) consumes nitric oxide (NO) about 600–1000-fold slower than the equivalent concentration of cell-free hemoglobin (Hb). Diffusion barriers of various sources have been suggested to explain this observation. In this work, a multicellular, spatially distributed, two-dimensional model, that describes the production, transport, and consumption of NO in blood vessels and the surrounding tissue, is developed. The model is used to assess the relative significance of NO transport barriers that reduce the rate of NO consumption in the blood. Unlike previous models of this system, the model developed here accounts explicitly for the presence of, and interactions among, a population of RBCs inside the lumen of the blood vessel and is, therefore, better suited to analyze, quantitatively, the contribution of each transport barrier as NO diffuses from its site of synthesis to the interior of the RBCs where it interacts with Hb. The model, which uses experimentally derived parameters, shows that extracellular unstirred boundary layer diffusion alone cannot account for the reduced NO consumption by RBC compared to an equivalent concentration of cell-free Hb. Since this result is reached using a two-dimensional representation of the RBCs, which overestimates the importance of the boundary layer diffusion resistance, it would be expected that in the real three-dimensional case, diffusion through the extracellular boundary layer would contribute even less to the overall mass transfer resistance. Consistent with recent experimental findings, the results of our model suggest that, under physiological conditions, transmembrane (membrane and its associated cytoskeleton layer) diffusion limitations in RBCs represent a key source of resistance for NO uptake by RBCs. © 2003 Biomedical Engineering Society.

PAC2003: 8716Uv, 8714Ee, 8715Vv, 8717Aa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Buerk, D. G.Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu. Rev. Biomed. Eng.3:109–143, 2001.

    Google Scholar 

  2. Butler, A. R., I. L. Megson, and P. G. Wright. Diffusion of nitric oxide and scavenging by the blood in the vasculature. Biochim. Biophys. Acta1425:168–176, 1998.

    Google Scholar 

  3. Carlsen, E., and J. H. Comroe, Jr.The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol.42:83–107, 1958.

    Google Scholar 

  4. Cassoly, R., and Q. H. Gibson. Conformation, cooperativity, and ligand binding in human hemoglobin. J. Mol. Biol.91:3301–3313, 1974.

    Google Scholar 

  5. Eich, R. F., T. S. Li, D. D. Lemon, D. H. Doherty, S. R. Curry, J. F. Aitken, A. J. Mathews, K. A. Johnson, R. D. Smith, G. N. Phillips, and J. S. Olson. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry35:6976–6983, 1996.

    Google Scholar 

  6. Kutchai, H., and N. C. Staub. Steady-state, hemoglobin-facilitated O2 transport in human erythrocytes. J. Gen. Physiol.53:576–589, 1969.

    Google Scholar 

  7. Herold, S., M. Exner, and T. Nauser. Kinetic and mechanistic studies of the NO-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry40:3385–3395, 2001.

    Google Scholar 

  8. Huang, K., T. H. Han, D. R. Hyduke, M. W. Vaughn, H. V. Herle, T. W. Hein, C. Zhang, L. Kuo, and J. C. Liao. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl. Acad. Sci. U.S.A.98:11771–11776, 2001.

    Google Scholar 

  9. L. J. Ignarro, Nitric Oxide: Biology and Pathobiology. CA: Academic, San Diego, 2000.

    Google Scholar 

  10. Jia, L., C. Bonaventura, J. Bonaventura, and J. S. Stamler. S-nitrosolhaemoglobin: A dynamic activity of blood involved in vascular control. Nature (London)380:221–226, 1996.

    Google Scholar 

  11. Lancaster, J.A tutorial on the diffusivity and reactivity of free nitric oxide. Nitric Oxide1:18–30, 1997.

    Google Scholar 

  12. Liao, J. C., T. W. Hein, M. W. Vaughn, K. Huang, and L. Kuo. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. U.S.A.96:8757–8761, 1999.

    Google Scholar 

  13. Liu, X., M. J. S. Miller, M. S. Joshi, H. Sadowska-Krowicka, D. A. Clark, and J. R. Lancaster. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem.273:18709–18713, 1998.

    Google Scholar 

  14. Liu, X. P., A. Samouilov, J. R. Lancaster, and J. L. Zweier. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem.277:26194–26199, 2002.

    Google Scholar 

  15. Malinski, T., Z. Taha, S. Grunfeld, S. Patton, M. Kapturczak, and P. Tomboulian. Diffusion of nitric oxide in the aorta wall monitored by porphyrinic microsensors. Biochem. Biophys. Res. Commun.193:1076–1082, 1993.

    Google Scholar 

  16. McMahon, T. J., R. E. Moon, B. P. Luschinger, M. S. Carraway, A. E. Stone, B. W. Stolp, A. J. Gow, J. R. Pawloski, P. Watke, D. J. Singel, C. A. Piantadosi, and J. S. Stamler. Nitric oxide in the human respiratory cycle. Nat. Med.8: 711–717 (2002).

    Google Scholar 

  17. Merchuk, J. C., Z. Tzure, and N. Lightfoot. Diffusional resistances to oxygen transfer in whole blood. Chem. Eng. Sci.38:1315–1321, 1983.

    Google Scholar 

  18. Pohl, U., and D. Lamontagne. Impaired tissue perfusion after inhibition of endothelium-derived nitric oxide. Basic Res. Cardiol.86:97–105, 1991.

    Google Scholar 

  19. Rice, S. A. Hydrodynamic and diffusion considerations of rapid-mix experiments with red blood cells. Biophys. J.29:65–78, 1980.

    Google Scholar 

  20. Schmidt-Schönbein, H., T. Fisher, G. Driessen, and H. Rieger. In: Microcirculation. Baltimore, MD: University Park Press, 1979, pp. 353–418.

    Google Scholar 

  21. Swihart, A. H., J. M. Mikrut, J. B. Ketterson, and R. C. Macdonald. Atomic force microscopy of the erythrocyte membrane skeleton. J. Microsc.204:212–225, 2001.

    Google Scholar 

  22. Takeuchi, M., H. Miyamoto, Y. Sako, H. Komizu, and A. Kusumi. Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J.74:2171–2183, 1998.

    Google Scholar 

  23. Tsoukias, N. M., and A. S. Popel. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin. Am. J. Physiol.282:H2265-H2277, 2002.

    Google Scholar 

  24. Vandegriff, K. D., and J. S. Olson. The kinetics of O release by human red blood cells in the presence of external sodium dithionite. J. Biol. Chem.259:12609–12618, 1984.

    Google Scholar 

  25. Vandegriff, K. D., and J. S. Olson. Morphological and physiological factors affecting oxygen uptake and release by red blood cells. J. Biol. Chem.259:12619–12627, 1984.

    Google Scholar 

  26. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocytes possess an intrinsic baarrier to nitric oxide consumption. J. Biol. Chem.275:2342–2348, 2000.

    Google Scholar 

  27. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocytes consumption of nitric oxide: Competition experiment and model analysis. Nitric Oxide5:18–31, 2001.

    Google Scholar 

  28. Vaughn, M. W., L. Kuo, and J. C. Liao. Effective diffusion distance of nitric oxide in the micocirculation. Am. J. Physiol.43:H1705-H1714, 1998.

    Google Scholar 

  29. Vaughn, M. W., L. Kuo, and J. C. Liao. Estimation of nitric oxide production and reaction rates in tissue using a mathematical model. Am. J. Physiol.43:H2163-H2176, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Farra, N.H., Christofides, P.D. & Liao, J.C. Analysis of Nitric Oxide Consumption by Erythrocytes in Blood Vessels using a Distributed Multicellular Model. Annals of Biomedical Engineering 31, 294–309 (2003). https://doi.org/10.1114/1.1553454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1553454

Navigation