Advertisement

Annals of Biomedical Engineering

, Volume 31, Issue 3, pp 318–326 | Cite as

Nonlinear and Frequency-Dependent Mechanical Behavior of the Mouse Respiratory System

  • Henrique T. Moriya
  • José Carlos T. B. Moraes
  • Jason H. T. Bates
Article

Abstract

The assessment of the mechanical properties of the respiratory system is typically done by oscillating flow into the lungs via the trachea, measuring the resulting pressure generated at the trachea, and relating the two signals to each other in terms of some suitable mathematical model. If the perturbing flow signal is broadband and not too large in amplitude, linear behavior is usually assumed and the input impedance calculated. Alternatively, some researchers have used flow signals that are narrow band but large in amplitude, and invoked nonlinear lumped-parameter models to account for the relationship between flow and pressure. There has been little attempt, however, to deal with respiratory data that are both broadband and reflective of system nonlinearities. In the present study, we collected such data from mice. To interpret these data, we first developed a time-domain approximation to a widely used model of respiratory input impedance. We then extended this model to include nonlinear resistive and elastic terms. We found that the nonlinear elastic term fit the data better than the linear model or the nonlinear resistance model when amplitudes were large. This model may be useful for detecting overinflation of the lung during mechanical ventilation. © 2003 Biomedical Engineering Society.

PAC2003: 8719Rr, 8719Uv

Input impedance Resistance Elastance Frequency domain Time domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Antonaglia, V., A. Peratoner, L. Simoni, A. Gullo, J. Milic-Emili, and W. A. Zin. Bedside assessment of respiratory viscoelastic properties in ventilated patients. Eur. Respir. J.16:302–308, 2000.Google Scholar
  2. 2.
    Bates, J. H. T., G. N. Maksym, D. Navajas, and B. Suki. Lung tissue rheology and 1/f noise. Ann. Biomed. Eng.22:674–681, 1994.Google Scholar
  3. 3.
    Bates, J. H. T., T. F. Schuessler, C. Dolman, and D. H. Eidelman. Temporal dynamics of acute isovolume bronchoconstriction in the rat. J. Appl. Physiol.82:55–62, 1997.Google Scholar
  4. 4.
    Bersten, A. D.Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur. Respir. J.12:526–532, 1998.Google Scholar
  5. 5.
    Bijaoui, E., S. A. Tuck, J. E. Remmers, and J. H. T. Bates. Estimating respiratory mechanics in the presence of flow limitation. J. Appl. Physiol.86:418–426, 1999.Google Scholar
  6. 6.
    Bijaoui, E., P. F. Baconnier, and J. H. T. Bates. Mechanical output impedance of the lung determined from cardiogenic oscillations. J. Appl. Physiol.91:859–865, 2001.Google Scholar
  7. 7.
    Daróczy, B., and Z. Hantos. Generation of optimum pseudorandom signals for respiratory impedance measurements. Int. J. Bio-Med. Comput.25:21–31, 1990.Google Scholar
  8. 8.
    Dechman, G., A.-M. Lauzon, and J. H. T. Bates. Mechanical behavior of the canine respiratory system at very low lung volumes. Respir. Physiol.95:119–129, 1994.Google Scholar
  9. 9.
    Farré, R., M. Mancini, M. Rotger, M. Ferrer, J. Roca, and D. Navajas. Oscillatory resistance measured during noninvasive proportional assist ventilation. Am. J. Respir. Crit. Care Med.164:790–794, 2001.Google Scholar
  10. 10.
    Gomes, R. F. M., X. Shen, R. Ramchandani, R. S. Tepper, and J. H. T. Bates. Comparative respiratory system mechanics in rodents. J. Appl. Physiol.89:908–916, 2000.Google Scholar
  11. 11.
    Hantos, Z., B. Daróczy, B. Suki, G. Galgóczy, and T. Csendes. Forced oscillatory impedance of the respiratory system at low frequencies. J. Appl. Physiol.60:123–132, 1986.Google Scholar
  12. 12.
    Hantos, Z., B. Daróczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol.72:168–178, 1992.Google Scholar
  13. 13.
    Hildebrandt, J.Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure–volume data. Bull. Math. Biophys.31:651–667, 1969.Google Scholar
  14. 14.
    Kaczka, D. W., E. P. Ingenito, B. Suki, and K. R. Lutchen. Partitioning airway and lung tissue resistances in humans: Effects of bronchoconstriction. J. Appl. Physiol.82:1531–1541, 1997.Google Scholar
  15. 15.
    Kano, S., C. J. Lanteri, A. W. Duncan, and P. D. Sly. Influence of nonlinearities on estimates of respiratory mechanics using multilinear regression analysis. J. Appl. Physiol.77:1185–1197, 1994.Google Scholar
  16. 16.
    Korenberg, M. J., and I. W. Hunter. The identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng.24:250–268, 1996.Google Scholar
  17. 17.
    Lauzon, A.-M., and J. H. T. Bates. Estimation of time-varying respiratory mechanical parameters by recursive least squares. J. Appl. Physiol.71:1159–1165, 1991.Google Scholar
  18. 18.
    Lutchen, K. R., K. Yang, D. W. Kaczka, and B. Suki. Optimal ventilation wave forms for estimating low-frequency respiratory impedance. J. Appl. Physiol.75:478–488, 1993.Google Scholar
  19. 19.
    Maksym, G. N., and J. H. T. Bates. Nonparametric block-structure modeling of rat lung mechanics. Ann. Biomed. Eng.25:1000–1008, 1997.Google Scholar
  20. 20.
    Michaelson, E. D., E. D. Grassman, and W. R. Peters. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest.56:1210–1230, 1975.Google Scholar
  21. 21.
    Muramatsu, K., K. Yukitake, M. Nakamura, I. Matsumoto, and Y. Motohiro. Monitoring of nonlinear respiratory elastance using a multiple linear regression analysis. Eur. Respir. J.17:1158–1166, 2001.Google Scholar
  22. 22.
    Pelosi, P., M. Croci, I. Ravagnan, M. Cerisara, P. Vicardi, A. Lissoni, and L. Gattinoni. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J. Appl. Physiol.82:811–818, 1997.Google Scholar
  23. 23.
    Peslin, R., and uJ. J. Fredberg. Oscillation mechanics of the respiratory system. In: Handbook of Physiology. Mechanics of Breathing, edited by P. T. Macklem and J. Mead. Bethesda, MA: American Physiological Society, 1986, pp. 145–177.Google Scholar
  24. 24.
    Peták, F., W. Habre, Z. Hantos, P. D. Sly, and D. R. Morel. Effects of pulmonary vascular pressures and flow on airway and parenchymal mechanics in isolated rat lungs. J. Appl. Physiol.92:169–178, 2002.Google Scholar
  25. 25.
    Schuessler, T. F., and J. H. T. Bates. Computer-controlled research ventilator for small animals: Design and evaluation. IEEE Trans. Biomed. Eng.42:860–866, 1995.Google Scholar
  26. 26.
    Suki, B., and J. H. T. Bates. A nonlinear viscoelastic model of lung tissue mechanics. J. Appl. Physiol.71:826–833, 1991.Google Scholar
  27. 27.
    Suki, B., and K. R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: Applications to respiratory mechanics. IEEE Trans. Biomed. Eng.39:1142–1151, 1992.Google Scholar
  28. 28.
    Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: A nonlinear block-structured modeling approach. J. Appl. Physiol.79:660–671, 1995.Google Scholar
  29. 29.
    Vassiliou, M. P., L. Petri, A. Amygdalou, M. Patrani, C. Psarakis, D. Nikolaki, G. Georgiadis, and P. K. Behrakis. Linear and nonlinear analysis of pressure and flow during mechanical ventilation. Intensive Care Med.26:1057–1064, 2000.Google Scholar
  30. 30.
    Wagers, S., L. Lundblad, H. T. Moriya, J. H. T. Bates, and C. G. Irvin. Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. J. Appl. Physiol.92:1802–1807, 2002.Google Scholar
  31. 31.
    Zerah, F., A. M. Lorino, H. Lorino, A. Harf, and I. Macquin-Mavier. Forced oscillation technique versus spirometry to assess bronchodilatation in patients with asthma and COPD. Chest108:41–47, 1995.Google Scholar
  32. 32.
    Zhang, Q., K. R. Lutchen, and B. Suki. Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics. Ann. Biomed. Eng.23:672–681, 1995.Google Scholar
  33. 33.
    Zhang, Q., K. R. Lutchen, and B. Suki. A frequency-domain approach to nonlinear and structure identification for long memory systems: Application to lung mechanics. Ann. Biomed. Eng.27:1–13, 1999.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Henrique T. Moriya
    • 1
    • 2
  • José Carlos T. B. Moraes
    • 2
  • Jason H. T. Bates
    • 1
  1. 1.Vermont Lung Center, Department of Medicine and Molecular Physiology and BiophysicsUniversity of VermontBurlington
  2. 2.Biomedical Engineering LaboratoryUniversity of São PauloSão PauloBrazil

Personalised recommendations