Skip to main content
Log in

Spatial Distribution of Human Respiratory System Transfer Impedance

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transfer impedance (Z tr) of the respiratory system provides specific information on airways and tissues, but little is known about its spatial distribution in the different thoracoabdominal regions. To study Z tr distribution on the chest wall surface we analyzed five healthy subjects in the supine position by applying a sinusoidal forcing pressure (4, 8, and 12 Hz) at the mouth and measuring airway opening pressure and flow. Three-dimensional positions of 68 reflective markers placed on the chest wall over selected reference points were simultaneously measured by an optoelectronic motion analyzer. A subset of ten points placed on the midline were used to measure chest wall movements in the craniocaudal direction. While the motion of rib cage markers was synchronous, the abdominal markers demonstrated surface waves propagating caudally. The amplitude and phase of these waves were strongly dependent on position and frequency. We used a new method to measure total and local chest wall volume variations to compute the distribution of Z tr over the chest wall. Above 4 Hz we found that Z tr was inhomogeneously distributed and strongly dependent on position and frequency, mainly in the abdomen where the phase was often ≫180° with high values of modulus. For this reason, we conclude that above 8 Hz Z tr represents rib cage mechanics almost exclusively. © 2003 Biomedical Engineering Society.

PAC2003: 8719Uv, 8780-y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aliverti, A., R. Dellaca, P. Pelosi, D. Chiumello, L. Gattinoni, and A. Pedotti. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography. Ann. Biomed. Eng.29:60–70, 2001.

    Google Scholar 

  2. Aliverti, A., R. Dellaca, P. Pelosi, D. Chiumello, A. Pedotti, and L. Gattinoni. Optoelectronic plethysmography in intensive care patients. Am. J. Respir. Crit. Care Med.161:1546–1552, 2000.

    Google Scholar 

  3. Aliverti, A., R. L. Dellaca, and A. Pedotti. Transfer impedance of the respiratory system by forced oscillation technique and optoelectronic plethysmography. Ann. Biomed. Eng.29:71–82, 2001.

    Google Scholar 

  4. Barnas, G. M., K. Yoshino, S. H. Loring, and J. Mead. Impedance and relative displacements of relaxed chest wall up to 4 Hz. J. Appl. Physiol.62:71–81, 1987.

    Google Scholar 

  5. Barnas, G. M., K. Yoshino, D. Stamenovic, Y. Kikuchi, S. H. Loring, and J. Mead. Chest wall impedance partitioned into rib cage and diaphragm-abdominal pathways. J. Appl. Physiol.66:350–359, 1989.

    Google Scholar 

  6. Borghese, N. A., P. Cerveri, and G. C. Ferrigno. Statistical comparison of DLT versus ILSSC in the calibration of a photogrametric stereo system. J. Biomech.30:409–413, 1997.

    Google Scholar 

  7. Brusasco, V., E. Schiavi, L. Basano, and P. Ottonello. Comparative evaluation of devices used for measurement of respiratory input impedance in different centres. Eur. Respir. Rev.4:118–120, 1994.

    Google Scholar 

  8. Cala, S. J., C. M. Kenyon, G. Ferrigno, P. Carnevali, A. Aliverti, A. Pedotti, P. T. Macklem, and D. F. Rochester. Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol.81:2680–2689, 1996.

    Google Scholar 

  9. Decramer, M., A. De Troyer, S. Kelly, L. Zocchi, and P. T. Macklem. Regional differences in abdominal pressure swings in dogs. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.57:1682–1687, 1984.

    Google Scholar 

  10. Dellaca, R. L., A. Aliverti, P. Pelosi, E. Carlesso, D. Chiumello, A. Pedotti, and L. Gattinoni. Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Crit. Care Med.29:1807–1811, 2001.

    Google Scholar 

  11. DuBois, A. B., A. W. Brody, D. H. Lewis, and B. F. Burgess. Oscillation mechanics of lungs and chest in man. J. Appl. Physiol.8:587–594, 1956.

    Google Scholar 

  12. Jackson, A. C., and K. R. Lutchen. Physiological basis for resonant frequencies in respiratory system impedances in dogs. J. Appl. Physiol.70:1051–1058, 1991.

    Google Scholar 

  13. Lehr, J. L., J. P. Butler, P. A. Westerman, S. L. Zatz, and J. M. Drazen. Photographic measurement of pleural surface motion during lung oscillation. J. Appl. Physiol.59:623–633, 1985.

    Google Scholar 

  14. Lutchen, K. R., J. R. Everett, and A. C. Jackson. Impact of frequency range and input impedance on airway–tissue separation implied from transfer impedance. J. Appl. Physiol.74:1089–1099, 1993.

    Google Scholar 

  15. Lutchen, K. R., and A. C. Jackson. Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs. IEEE Trans. Biomed. Eng.39:644–651, 1992.

    Google Scholar 

  16. Lutchen, K. R., A. Sullivan, F. T. Arbogast, B. R. Celli, and A. C. Jackson. Use of transfer impedance measurements for clinical assessment of lung mechanics. Am. J. Respir. Crit. Care Med.157:435–446, 1998.

    Google Scholar 

  17. Marchal, F., N. Bouaziz, C. Baeyert, C. Gallina, C. Duvivier, and R. Peslin. Separation of airway and tissue properties by transfer respiratory impedance and thoracic gas volume in reversible airway obstruction. Eur. Respir. J.9:253–261, 1996.

    Google Scholar 

  18. Peslin, R., C. Duvivier, and C. Gallina. Total respiratory input and transfer impedances in humans. J. Appl. Physiol.59:492–501, 1985.

    Google Scholar 

  19. Peslin, R., C. Gallina, and C. Duvivier. Respiratory transfer impedances with pressure input at the mouth and chest. J. Appl. Physiol.61:81–86, 1986.

    Google Scholar 

  20. Peslin, R., J. Papon, C. Duviver, and J. Richalet. Frequency response of the chest: Modeling and parameter estimation. J. Appl. Physiol.39:523–534, 1975.

    Google Scholar 

  21. Rotger, M., R. Farro, R. Peslin, and D. Navajas. T model partition of lung and respiratory system impedances. J. Appl. Physiol.78:938–947, 1995.

    Google Scholar 

  22. Rotger, M., R. Peslin, C. Duvivier, D. Navajas, and C. Gallina. Density dependence of respiratory input and transfer impedances in humans. J. Appl. Physiol.65:928–933, 1988.

    Google Scholar 

  23. Rotger, M., R. Peslin, E. Oostveen, and C. Gallina. Confidence intervals of respiratory mechanical properties derived from transfer impedance. J. Appl. Physiol.70:2432–2438, 1991.

    Google Scholar 

  24. Tomalak, W., R. Peslin, and C. Duvivier. Variations in airways impedance during respiratory cycle derived from combined measurements of input and transfer impedances. Eur. Respir. J.12:1436–1441, 1998.

    Google Scholar 

  25. Tomalak, W., R. Peslin, C. Duvivier, and C. Gallina. Optimal frequency range to analyze respiratory transfer impedance with six-element model. J. Appl. Physiol.75:2656–2664, 1993.-

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellacà, R.L., Aliverti, A., Lutchen, K.R. et al. Spatial Distribution of Human Respiratory System Transfer Impedance. Annals of Biomedical Engineering 31, 121–131 (2003). https://doi.org/10.1114/1.1541012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1541012

Navigation