Annals of Biomedical Engineering

, Volume 31, Issue 1, pp 12–20 | Cite as

Adaptations of Trabecular Bone to Low Magnitude Vibrations Result in More Uniform Stress and Strain Under Load

  • Stefan Judex
  • Steve Boyd
  • Yi-Xian Qin
  • Simon Turner
  • Kenny Ye
  • Ralph Müller
  • Clinton Rubin
Article

Abstract

Extremely low magnitude mechanical stimuli (<10 microstrain) induced at high frequencies are anabolic to trabecular bone. Here, we used finite element (FE) modeling to investigate the mechanical implications of a one year mechanical intervention. Adult female sheep stood with their hindlimbs either on a vibrating plate (30 Hz, 0.3 g) for 20 min/d, 5 d/wk or on an inactive plate. Microcomputed tomography data of 1 cm bone cubes extracted from the medial femoral condyles were transformed into FE meshes. Simulated compressive loads applied to the trabecular meshes in the three orthogonal directions indicated that the low level mechanical intervention significantly increased the apparent trabecular tissue stiffness of the femoral condyle in the longitudinal (+17%, p < 0.02), anterior–posterior (+29%, p < 0.01), and medial-lateral (+37%, p < 0.01) direction, thus reducing apparent strain magnitudes for a given applied load. For a given apparent input strain (or stress), the resultant stresses and strains within trabeculae were more uniformly distributed in the off-axis loading directions in cubes of mechanically loaded sheep. These data suggest that trabecular bone responds to low level mechanical loads with intricate adaptations beyond a simple reduction in apparent strain magnitude, producing a structure that is stiffer and less prone to fracture for a given load. © 2003 Biomedical Engineering Society.

Bone adaptation Mechanical stimuli Mechanical strain and stress Mechanical properties Finite element modeling Bone formation Osteoporosis Noninvasive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Boyd, S. K., R. Muller, and R. F. Zernicke. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J. Bone Miner. Res.17:687­694, 2002.­Google Scholar
  2. 2.
    Callaghan, J. P., and S. M. McGill. Frozen storage increases the ultimate compressive load of porcine vertebrae. J. Orthop. Res.13:809­812, 1995.­Google Scholar
  3. 3.
    Fyhrie, D. P., and D. R. Carter. A unifying principle relating stress to trabecular bone morphology. J. Orthop. Res.4:304­317, 1986.­Google Scholar
  4. 4.
    Gross, T. S., J. L. Edwards, K. J. McLeod, and C. T. Rubin. Strain gradients correlate with sites of periosteal bone formation. J. Bone Miner. Res.12:982­988, 1997.­Google Scholar
  5. 5.
    Hahn, M., M. Vogel, M. Pompesius­Kempa, and G. Delling. Trabecular bone pattern factor: A new parameter for simple quantification of bone microarchitecture. Bone (N.Y.)13:327­330, 1992.­Google Scholar
  6. 6.
    Hildebrand, T., A. Laib, R. Muller, J. Dequeker, and P. Ruegsegger. Direct three­dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res.14:1167­1174, 1999.­Google Scholar
  7. 7.
    Hou, F. J., S. M. Lang, S. J. Hoshaw, D. A. Reimann, and D. P. Fyhrie. Human vertebral body apparent and hard tissue stiffness. J. Biomech.31:1009­1015, 1998.­Google Scholar
  8. 8.
    Jacobs, C. R., B. R. Davis, C. J. Rieger, J. J. Francis, M. Saad, and D. P. Fyhrie. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large­scale finite­element modeling. North American Congress on Biomechanics. J. Biomech.32:1159­1164, 1999.­Google Scholar
  9. 9.
    Judex, S., T. S. Gross, and R. F. Zernicke. Strain gradients correlate with sites of exercise­induced bone­forming surfaces in the adult skeleton. J. Bone Miner. Res.12:1737­1745, 1997.­Google Scholar
  10. 10.
    Judex, S., and R. F. Zernicke. High­impact exercise and growing bone: Relation between high strain rates and enhanced bone formation. J. Appl. Physiol.88:2183­2191, 2000.­Google Scholar
  11. 11.
    Kabel, J., B. Van Rietbergen, M. Dalstra, A. Odgaard, and R. Huiskes. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech.32:673­680, 1999.­Google Scholar
  12. 12.
    Keaveny, T. M., and W. C. Hayes. A 20­year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng.115:534­542, 1993.­Google Scholar
  13. 13.
    Keaveny, T. M., T. P. Pinilla, R. P. Crawford, D. L. Kopperdahl, and A. Lou. Systematic and random errors in compression testing of trabecular bone. J. Orthop. Res.15:101­110, 1997.­Google Scholar
  14. 14.
    Ladd, A. J., J. H. Kinney, D. L. Haupt, and S. A. Goldstein. Finite­element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus. J. Orthop. Res.16:622­628, 1998.­Google Scholar
  15. 15.
    Mosley, J. R., and L. E. Lanyon. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone (N.Y.)23:313­318, 1998.­Google Scholar
  16. 16.
    Mosley, J. R., B. M. March, J. Lynch, and L. E. Lanyon. Strain magnitude related changes in whole bone architecture in growing rats. Bone (N.Y.)20:191­198, 1997.­Google Scholar
  17. 17.
    Muller, R., H. Van Campenhout, B. Van Damme, G. Van Der Perre, J. Dequeker, T. Hildebrand, and P. Ruegsegger. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and microcomputed tomography. Bone (N.Y.)23:59­66, 1998.­Google Scholar
  18. 18.
    Niebur, G. L., J. C. Yuen, A. C. Hsia, and T. M. Keaveny. Convergence behavior of high­resolution finite element models of trabecular bone. J. Biomech. Eng.121:629­635, 1999.­Google Scholar
  19. 19.
    O'Connor, J. A., L. E. Lanyon, and H. MacFie. The influence of strain rate on adaptive bone remodelling. J. Biomech.15:767­781, 1982.­Google Scholar
  20. 20.
    Riggs, B. L., S. F. Hodgson, W. M. O'Fallon, E. Y. Chao, H. W. Wahner, J. M. Muhs, S. L. Cedel, and L. J. Melton. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N. Engl. J. Med.322:802­809, 1990.­Google Scholar
  21. 21.
    Rubin, C., A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLeod. Anabolism: Low mechanical signals strengthen long bones. Nature (London)412:603­604, 2001.­Google Scholar
  22. 22.
    Rubin, C., A. S. Turner, C. Mallinckrodt, C. Jerome, K. McLeod, and S. Bain. Mechanical strain, induced noninvasively in the high­frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone (N.Y.)30:445­452, 2002.­Google Scholar
  23. 23.
    Rubin, C., A. S. Turner, R. Muller, E. Mittra, K. McLeod, W. Lin, and Y. X. Qin. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res.17:349­357, 2002.­Google Scholar
  24. 24.
    Rubin, C., G. Xu, and S. Judex. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low­magnitude mechanical stimuli. FASEB J.15:2225­2229, 2001.­Google Scholar
  25. 25.
    Rubin, C. T., and L. E. Lanyon. Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int.37:411­417, 1985.­Google Scholar
  26. 26.
    Ruegsegger, P., B. Koller, and R. Muller. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int.58:24­29, 1996.­Google Scholar
  27. 27.
    Turner, C. H., V. Anne, and R. M. Pidaparti. A uniform strain criterion for trabecular bone adaptation: Do continuum­level strain gradients drive adaptation?J. Biomech.30:555­563, 1997.­Google Scholar
  28. 28.
    Turner, C. H., I. Owan, E. J. Brizendine, W. Zhang, M. E. Wilson, and A. J. Dunipace. High fluoride intakes cause osteomalacia and diminished bone strength in rats with renal deficiency. Bone (N.Y.)19:595­601, 1996.­Google Scholar
  29. 29.
    Van Rietbergen, B., H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite­element models. J. Biomech.28:69­81, 1995.­Google Scholar
  30. 30.
    Van Rietbergen, B., H. Weinans, B. J. W. Polman, and R. Huiskes. Computational strategies for iterative solutions of large FEM applications employing voxel data. Int. J. Numer. Methods Eng.39:2743­2767, 1996.­ ­Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Stefan Judex
    • 1
  • Steve Boyd
    • 2
  • Yi-Xian Qin
    • 1
  • Simon Turner
    • 3
  • Kenny Ye
    • 4
  • Ralph Müller
    • 2
  • Clinton Rubin
    • 1
  1. 1.Department of Biomedical EngineeringState University of New York at Stony BrookStony Brook
  2. 2.Institute for Biomedical EngineeringSwiss Federal Institute of Technology (ETH) and University ZürichZürichSwitzerland
  3. 3.Department of Clinical SciencesColorado State UniversityFt. Collins
  4. 4.Department of Applied Mathematics and StatisticsState University of New York at Stony BrookStony Brook

Personalised recommendations