Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries

Abstract

Local hemodynamics are an important factor in atherosclerosis, from the development of early lesions, to the assessment of stroke risk, to determining the ultimate fate of a mature plaque. Until recently, our understanding of arterial fluid dynamics and their relationship to atherosclerosis was limited by the use of idealized or averaged artery models. Recent advances in medical imaging, computerized image processing, and computational fluid dynamics (CFD) now make it possible to computationally reconstruct the time-varying, three-dimensional blood flow patterns in anatomically realistic models. In this paper we review progress, made largely within the last five years, towards the routine use of anatomically realistic CFD models, derived from in vivo medical imaging, to elucidate the role of local hemodynamics in the development and progression of atherosclerosis in large arteries. In addition to describing various image-based CFD studies carried out to date, we review the medical imaging and image processing techniques available to acquire the necessary geometric and functional boundary conditions. Issues related to accuracy, precision, and modeling assumptions are also discussed. © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8757Gg, 8710+e

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    Aoki, S., K. Aoki, S. Ohsawa, H. Nakajima, H. Kumagai, and T. Araki. Dynamic MR imaging of the carotid wall. J. Magn. Reson. Imaging 9:420–427, 1999.

    Google Scholar 

  2. 2

    Augst, A. D., D. C. Barratt, A. D. Hughes, S. A. Thom, and X. Y. Xu. CFD model of a human carotid artery bifurcation reconstructed from 3D ultrasound data. Proceedings of the 5th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 2001 (unpublished).

  3. 3

    Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. Arterioscler., Thromb., Vasc. Biol. 19:996–1003, 1999.

    Google Scholar 

  4. 4

    Stroud, J. S., S. A. Berger, and D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124:9–20, 2002.

    Google Scholar 

  5. 5

    Bergeron, P., R. Carrier, D. Roy, N. Blais, and J. Raymond. Radiation doses to patients in neurointerventional procedures. AJNR Am. J. Neuroradiol. 15:1809–1812, 1994.

    Google Scholar 

  6. 6

    Botnar, R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33:137–144, 2000.

    Google Scholar 

  7. 7

    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atherosclerosis and arterial wall shear: Observations, correlation, and proposal of a shear-dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B 177:109, 1971.

    Google Scholar 

  8. 8

    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Proposal of a shear-dependent mass transfer mechanism for atherogenesis. Clin. Sci. 40:5P, 1971.

    Google Scholar 

  9. 9

    Cebral, J. R., R. Lohner, and J. E. Burgess. Computer simulation of cerebral artery clipping: Relevance to aneurysm neurosurgery planning. Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, 2000 (unpublished).

  10. 10

    Cebral, J. R., R. Lohner, P. L. Choyke, and P. J. Yim. Merging of intersecting triangulations for finite-element modeling. J. Biomech. 34:815–819, 2001.

    Google Scholar 

  11. 11

    Cebral, J. R., R. Lohner, O. Soto, and P. J. Yim. On the modeling of carotid artery blood flow from magnetic resonance images. ASME Bioeng. Conf. 50:619–620, 2001.

    Google Scholar 

  12. 12

    Cebral, J. R., P. J. Yim, R. Lohner, O. Soto, H. Marcos, and P. J. Choyke. New methods for computational fluid dynamics modeling of carotid artery from magnetic resonance angiography. Proc. SPIE 4321:177–187, 2001.

    Google Scholar 

  13. 13

    Chandran, K. B., M. J. Vonesh, A. Roy, S. Greenfield, B. Kane, R. Greene, and D. D. McPherson. Computation of vascular flow dynamics from intravascular ultrasound images. Med. Eng. Phys. 18:295–304, 1996.

    Google Scholar 

  14. 14

    Clingan, P. A., and M. H. Friedman. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries. Ann. Biomed. Eng. 28:302–308, 2000.

    Google Scholar 

  15. 15

    Fahrig, R., A. J. Fox, S. Lownie, and D. W. Holdsworth. Use of a C-arm system to generate true three-dimensional computed rotational angiograms: Preliminary in vitro and in vivo results. AJNR Am. J. Neuroradiol. 18:1507–1514, 1997.

    Google Scholar 

  16. 16

    Fenster, A., D. B. Downey, and H. N. Cardinal. Three-dimensional ultrasound imaging. Phys. Med. Biol. 46:R67–R99, 2001.

    Google Scholar 

  17. 17

    Foutrakis, G. N., G. Burgreen, H. Yonas, and R. J. Sclabassi. Construction of 3D arterial volume meshes from magnetic resonance angiography. Neurol. Res. 18:354–360, 1996.

    Google Scholar 

  18. 18

    Frayne, R., D. A. Steinman, C. R. Ethier, and B. K. Rutt. Accuracy of MR phase contrast velocity measurements for unsteady flow. J. Magn. Reson. Imaging 5:428–431, 1995.

    Google Scholar 

  19. 19

    Friedman, M. H., C. B. Bargeron, O. J. Deters, G. M. Hutchins, and F. F. Mark. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis (Berlin) 68:27–33, 1987.

    Google Scholar 

  20. 20

    Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis (Berlin) 60:161–171, 1986.

    Google Scholar 

  21. 21

    Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22:165–197,1968.

    Google Scholar 

  22. 22

    Gibson, C. M., L. Diaz, K. Kandarpa, F. M. Sacks, R. C. Pasternak, T. Sandor, C. Feldman, and P. H. Stone. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler. Thromb. 13:310–315,1993.

    Google Scholar 

  23. 23

    Gill, J. D., H. M. Ladak, D. A. Steinman, and A. Fenster. Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med. Phys. 27:1333–1342, 2000.

    Google Scholar 

  24. 24

    Gnasso, A., C. Carallo, C. Irace, V. Spagnuolo, N. G. De, P. L. Mattioli, and A. Pujia. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 94:3257–3262, 1996.

    Google Scholar 

  25. 25

    Gnasso, A., C. Irace, C. Carallo, F. M. De, C. Motti, P. L. Mattioli, and A. Pujia. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998, 1997.

    Google Scholar 

  26. 26

    Goldman, D., and A. S. Popel. Computational modeling of oxygen transport from complex capillary networks. Relation to the microcirculation physiome. Adv. Exp. Med. Biol. 471:555–563, 1999.

    Google Scholar 

  27. 27

    Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206:181–194, 2000.

    Google Scholar 

  28. 28

    Guadagni, G., F. Migliavacca, G. Dubini, and E. L. Bove. Simulations of surgical planning for fontan procedures. Proc. ASME Bioeng. Conf. 50:911–912, 2001.

    Google Scholar 

  29. 29

    Holdsworth, D. W., C. J. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. Characterization of common carotid artery blood-flow wave forms in normal human subjects. Physiol. Meas. 20:219–240, 1999.

    Google Scholar 

  30. 30

    Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056, 2001.

    Google Scholar 

  31. 31

    Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computer simulation and geometric design of endarterectomized carotid artery bifurcations. Crit. Rev. Biomed. Eng. 28:53–59, 2000.

    Google Scholar 

  32. 32

    Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys. 22:13–27, 2000.

    Google Scholar 

  33. 33

    Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Comput. Biol. Med. 31:365–384, 2001.

    Google Scholar 

  34. 34

    Ilegbusi, O. J., Z. Hu, R. Nesto, S. Waxman, D. Cyganski, J. Kilian, P. H. Stone, and C. L. Feldman. Determination of blood flow and endothelial shear stress in human coronary artery in vivo. J. Invasive Cardiol. 11:667–674, 1999.

    Google Scholar 

  35. 35

    Jespersen, S. K., J. E. Wilhjelm, and H. Sillesen. Multiangle compound imaging. Ultrason. Imaging 20:81–102, 1998.

    Google Scholar 

  36. 36

    Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.

    Google Scholar 

  37. 37

    Karner, G., K. Perktold, M. Hofer, and D. Liepsch. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comput. Methods Biomech. Biomed. Eng. 2:171–185, 1999.

    Google Scholar 

  38. 38

    Kornet, L., A. P. Hoeks, J. Lambregts, and R. S. Reneman. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler., Thromb., Vasc. Biol. 19:2933–2939, 1999.

    Google Scholar 

  39. 39

    Kornet, L., J. Lambregts, A. P. Hoeks, and R. S. Reneman. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler., Thromb., Vasc. Biol. 18:1877–1884, 1998.

    Google Scholar 

  40. 40

    Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler., Thromb., Vasc. Biol. 17:2061–2065, 1997.

    Google Scholar 

  41. 41

    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas) 5:293–302, 1985.

    Google Scholar 

  42. 42

    Ladak, H. M., J. S. Milner, and D. A. Steinman. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J. Biomech. Eng. 122:96–99, 2000.

    Google Scholar 

  43. 43

    Ladak, H. M., J. B. Thomas, J. R. Mitchell, B. K. Rutt, and D. A. Steinman. A semiautomatic technique for measurement of arterial wall from black blood MRI. Med. Phys. 28:1098–1107, 2001.

    Google Scholar 

  44. 44

    Lei, M., C. Kleinstreuer, and G. A. Truskey. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med. Eng. Phys. 18:326–332, 1996.

    Google Scholar 

  45. 45

    Liu, Y., Y. Lai, A. Nagaraj, B. Kane, A. Hamilton, R. Greene, D. D. McPherson, and K. B. Chandran. Pulsatile flow simulation in arterial vascular segments using intravascular ultrasound images. Med. Eng. Phys. 23:583–595, 2001.

    Google Scholar 

  46. 46

    Long, Q., X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes, and A. V. Stanton. Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study. J. Magn. Reson. Imaging 11:299–311, 2000.

    Google Scholar 

  47. 47

    Long, Q., X. Y. Xu, M. Bourne, and T. M. Griffith. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43:565–576, 2000.

    Google Scholar 

  48. 48

    Long, Q., X. Y. Xu, M. W. Collins, M. Bourne, and T. M. Griffith. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Comput. Methods Programs Biomed. 56:249–259, 1998.

    Google Scholar 

  49. 49

    Long, Q., X. Y. Xu, M. W. Collins, T. M. Griffith, and M. Bourne. The combination of magnetic resonance angiography and computational fluid dynamics: A critical review. Crit. Rev. Biomed. Eng. 26:227–274, 1998.

    Google Scholar 

  50. 50

    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Google Scholar 

  51. 51

    Meairs, S., J. Rother, W. Neff, and M. Hennerici. New and future developments in cerebrovascular ultrasound, magnetic resonance angiography, and related techniques. J. Clin. Ultrasound 23:139–149, 1995.

    Google Scholar 

  52. 52

    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.

    Google Scholar 

  53. 53

    Moore, J. A., B. K. Rutt, S. J. Karlik, K. Yin, and C. R. Ethier. Computational blood flow modeling based on in vivo measurements. Ann. Biomed. Eng. 27:627–640, 1999.

    Google Scholar 

  54. 54

    Moore, J. A., D. A. Steinman, and C. R. Ethier. Computational blood flow modeling: Errors associated with reconstructing finite-element models from magnetic resonance images. J. Biomech. 31:179–184, 1998.

    Google Scholar 

  55. 55

    Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Eng. 27:32–41, 1999.

    Google Scholar 

  56. 56

    Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.

    Google Scholar 

  57. 57

    Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29:109–120, 2001.

    Google Scholar 

  58. 58

    Myers, J. G., M. Ojha, K. W. Johnston, and C. R. Ethier. Influence of branches, curvature, and caliber on blood flow patterns in the human right coronary artery. Comput. Methods Biomech. Biomed. Eng. (in press).

  59. 59

    Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.

    Google Scholar 

  60. 60

    Pedersen, E. M., S. Oyre, M. Agerbaek, I. B. Kristensen, S. Ringgaard, P. Boesiger, and W. P. Paaske. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur. J. Vasc. Endovasc. Surg. 18:328–333, 1999.

    Google Scholar 

  61. 61

    Perktold, K., and M. Hofer. Mathematical modeling of flow effects and transport processes in arterial bifurcation models. In The Haemodynamics of Arterial Organs—Comparison of Computational Predictions with In vivo and In vitro Data, edited by X. Y. Xu and M. W. Collins. Southampton, UK: WIT, 1999, pp. 43–84.

    Google Scholar 

  62. 62

    Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.

    Google Scholar 

  63. 63

    Perktold, K., A. Leuprecht, M. Prosi, T. Berk, M. Czerny, W. Trubel, and H. Schima. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses: Computer studies on various designs. Ann. Biomed. Eng. (in press).

  64. 64

    Prakash, S., and C. R. Ethier. Enhanced error estimator for adaptive finite-element analysis of 3D incompressible flow. Comput. Methods Appl. Mech. Eng. 190:5413–5426, 2001.

    Google Scholar 

  65. 65

    Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001.

    Google Scholar 

  66. 66

    Raghavan, M. L., D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31:760–769, 2000.

    Google Scholar 

  67. 67

    Rutt, B. K., D. W. Holdsworth, S. Naik, D. H. Lee, and A. J. Fox. Ultra-high-resolution three-dimensional carotid MRA: Validation of ceMRA and MOTSA with CRA. Proceedings of the International Society for Magnetic Resonance in Medicine 9th Scientific Meeting, 2001, p. 399.

  68. 68

    Shpilfoygel, S. D., R. A. Close, D. J. Valentino, and G. R. Duckwiler. X-ray videodensitometric methods for blood flow and velocity measurement: A critical review of literature. Med. Phys. 27:2008–2023, 2000.

    Google Scholar 

  69. 69

    Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. J. Magn. Reson. Imaging 7:339–346, 1997.

    Google Scholar 

  70. 70

    Steinman, D. A., and B. K. Rutt. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn. Reson. Med. 39:635–641, 1998.

    Google Scholar 

  71. 71

    Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, J. G. Merino, and J. D. Spence. Use of a patient-specific computational hemodynamic model to explain conflicting Doppler and B-mode ultrasound assessments of carotid stenosis. Proceedings of the 2nd World Congress on Medical Physics and Biomedical Engineering, 2000 (unpublished).

  72. 72

    Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.

    Google Scholar 

  73. 73

    Tasciyan, T. A., R. Banerjee, Y. I. Cho, and R. Kim. Two-dimensional pulsatile hemodynamic analysis in the magnetic resonance angiography interpretation of a stenosed carotid arterial bifurcation. Med. Phys. 20:1059–1070, 1993.

    Google Scholar 

  74. 74

    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision making. Comput. Aided Surg. 4:231–247, 1999.

    Google Scholar 

  75. 75

    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. Comput. Phys. 10:224–232, 1996.

    Google Scholar 

  76. 76

    Thomas, J. B., B. K. Rutt, H. M. Ladak, and D. A. Steinman. Effect of black blood MR image quality on vessel wall segmentation. Magn. Reson. Med. 46:299–304, 2001.

    Google Scholar 

  77. 77

    Thompson, J. F., B. K. Soni, and N. P. Weatherill. Handbook of Grid Generation. Boca Raton, FL: CRC, 1998.

    Google Scholar 

  78. 78

    Van Langenhove, G., J. J. Wentzel, R. Krams, C. J. Slager, J. N. Hamburger, and P. W. Serruys. Helical velocity patterns in a human coronary artery: A three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 102:E22–E24, 2000.

    Google Scholar 

  79. 79

    Vonesh, M. J., C. H. Cho, J. V. Pinto, B. J. Kane, D. S. Lee, S. I. Roth, K. B. Chandran, and D. D. McPherson. Regional vascular mechanical properties by 3D intravascular ultrasound with finite-element analysis. Am. J. Physiol. 272:H425–H437, 1997.

    Google Scholar 

  80. 80

    Vorp, D. A., D. A. Steinman, and C. R. Ethier. Computational modeling of arterial biomechanics. Comput. Sci. Eng. 3:51–64, 2001.

    Google Scholar 

  81. 81

    Wang, K. C., R. W. Dutton, and C. A. Taylor. Improving geometric model construction for blood flow modeling. IEEE Eng. Med. Biol. Mag. 18:33–39, 1999.

    Google Scholar 

  82. 82

    Wentzel, J. J., J. Kloet, I. Andhyiswara, J. A. Oomen, J. C. Schuurbiers, B. de Smet, M. J. Post, D. de Kleijn, G. Pasterkamp, C. Borst, C. J. Slager, and R. Krams. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: Effect of matrix metalloproteinase inhibition. Circulation 104:91–96, 2001.

    Google Scholar 

  83. 83

    Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Google Scholar 

  84. 84

    Yim, P. J., J. R. Cebral, R. Mullick, and P. L. Choyke. Vessel surface reconstruction with a tubular deformable model. IEEE Trans. Med. Imaging 20:1411–1421, 2001.

    Google Scholar 

  85. 85

    Zhao, S. Z., X. Y. Xu, B. Ariff, Q. Long, A. V. Stanton, A. D. Hughes, and S. A. Thom. Interindividual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. (in press).

  86. 86

    Zhao, S. Z., X. Y. Xu, M. W. Collins, A. V. Stanton, A. D. Hughes, and S. A. Thom. Flow in carotid bifurcations: Effect of the superior thyroid artery. Med. Eng. Phys. 21:207–214, 1999.

    Google Scholar 

  87. 87

    Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, and Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Steinman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinman, D.A. Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries. Annals of Biomedical Engineering 30, 483–497 (2002). https://doi.org/10.1114/1.1467679

Download citation

  • Computational fluid dynamics
  • Hemodynamics
  • Medical imaging
  • 3D reconstruction
  • Finite-element method