Skip to main content
Log in

Ultrafast Flow Quantification With Segmented k-Space Magnetic Resonance Phase Velocity Mapping

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) phase-velocity mapping (PVM) is routinely being used clinically to measure blood flow velocity. Conventional nonsegmented PVM is accurate but relatively slow (3–5 min per measurement). Ultrafast k-space segmented PVM offers much shorter acquisitions (on the order of seconds instead of minutes). The aim of this study was to evaluate the accuracy of segmented PVM in quantifying flow from through-plane velocity measurements. Experiments were performed using four straight tubes (inner diameter of 5.6–26.2 mm), under a variety of steady (1.7–200 ml/s) and pulsatile (6–90 ml/cycle) flow conditions. Two different segmented PVM schemes were tested, one with five k-space lines per segment and one with nine lines per segment. Results showed that both segmented sequences provided very accurate flow quantification (errors<5%) under both steady and pulsatile flow conditions, even under turbulent flow conditions. This agreement was confirmed via regression analysis. Further statistical analysis comparing the flow data from the segmented PVM techniques with (i) the data from the nonsegmented technique and (ii) the true flow values showed no significant difference (all p values≫0.05). Preliminary flow measurements in the ascending aorta of two human subjects using the nonsegmented sequence and the segmented sequence with nine lines per segment showed very close agreement. The results of this study suggest that ultrafast PVM has great potential to measure blood velocity and quantify blood flow clinically. © 2002 Biomedical Engineering Society.

PAC2002: 8761Lh, 8757Nk, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 1:307-310, 1986.

    Google Scholar 

  2. Bock, M., S. O. Schoenberg, L. R. Schad, M. V. Knopp, M. Essig, and G. van Kaick. Interleaved gradient-echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery. J. Magn. Reson. Imaging 8:889-895, 1998.

    Google Scholar 

  3. Bogren, H. G., and M. H. Buonocore. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J. Magn. Reson. Imaging 4:119-130, 1994.

    Google Scholar 

  4. Bryant, D. J., J. A. Payne, D. N. Firmin, and D. B. Longmore. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J. Comput. Assist. Tomogr. 8:588-593, 1984.

    Google Scholar 

  5. Chatzimavroudis, G. P., P. G. Walker, J. N. Oshinski, R. H. Franch, R. I. Pettigrew, and A. P. Yoganathan. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn. Reson. Med. 37:545-551, 1997.

    Google Scholar 

  6. Chatzimavroudis, G. P., P. G. Walker, J. N. Oshinski, R. H. Franch, R. I. Pettigrew, and A. P. Yoganathan. The importance of slice location on the accuracy of aortic regurgitation measurements with magnetic resonance phase velocity mapping: An in vitro investigation. Ann. Biomed. Eng. 25:644-652, 1997.

    Google Scholar 

  7. Chatzimavroudis, G. P., J. N. Oshinski, R. H. Franch, R. I. Pettigrew, P. G. Walker, and A. P. Yoganathan. Quantification of aortic regurgitation with magnetic resonance phase velocity mapping: A clinical investigation of the importance of slice location. J. Heart Valve Disease 7:94-101, 1998.

    Google Scholar 

  8. Chatzimavroudis, G. P., J. N. Oshinski, R. I. Pettigrew, P. G. Walker, R. H. Franch, and A. P. Yoganathan. Quantification of mitral regurgitation with magnetic resonance phase velocity mapping using a control volume method. J. Magn. Reson. Imaging 8:577-582, 1998.

    Google Scholar 

  9. Chuang, M. L., M. H. Chen, V. C. Khasgiwala, M. V. McConnell, R. R. Edelman, and W. J. Manning. Adaptive correction of imaging plane position in segmented k-space cine cardiac MRI. J. Magn. Reson. Imaging 7:811-814, 1997.

    Google Scholar 

  10. Davis, C. P., P.-F. Liu, M. Hauser, S. C. Göhde, G. K. von Schulthess, and J. F. Debatin. Coronary flow and coronary flow reserve measurements in humans with breath-held magnetic resonance phase contrast velocity mapping. Magn. Reson. Med. 37:537-544, 1997.

    Google Scholar 

  11. Debatin, J. F., D. A. Leung, S. Wildermuth, R. Botnar, J. Felblinger, and G. C. McKinnon. Flow quantitation with echo-planar phase-contrast velocity mapping: In vitro and in vivo evaluation. J. Magn. Reson. Imaging 5:656-662, 1995.

    Google Scholar 

  12. Duerk, J. L. and P. M. Pattanu. In-plane flow velocity quantification along the phase encoding axis in MRI. Magn. Reson. Imaging 6:321-333, 1988.

    Google Scholar 

  13. Dulce, M.-C., G. H. Mostbeck, M. O'Sullivan, M. Cheitlin, G. R. Caputo, and C. B. Higgins. Severity of aortic regurgitation: Interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology 185:234-240, 1992.

    Google Scholar 

  14. Firmin, D. N., R. H. Klipstein, G. L. Hounsfield, M. P. Paley, and D. B. Longmore. Echo-planar high-resolution flow velocity mapping. Magn. Reson. Med. 12:316-327, 1989.

    Google Scholar 

  15. Hines, W. W., and D. C. Montgomery. Probability and Statistics in Engineering and Management Science, 3rd Ed., New York: Wiley, 1990, p. 732.

    Google Scholar 

  16. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235-2247, 1993.

    Google Scholar 

  17. Klipstein, R. H., D. N. Firmin, S. R. Underwood, R. S. O. Rees, and D. B. Longmore. Blood flow patterns in the human aorta studied by magnetic resonance, Br. Heart J. 58:316-323, 1987.

    Google Scholar 

  18. Kondo, C., G. R. Caputo, R. Semelka, E. Foster, A. Shimakawa, and C. B. Higgins. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: In vitro and in vivo validation. Am. J. Roentgenol. 157:9-16, 1991.

    Google Scholar 

  19. Laffon, E., R. Lecesne, V. de Ledinghen, N. Valli, P. Couzigou, F. Laurent, J. Drouillard, D. Ducassou, and J.-L. Barat. Segmented 5 versus nonsegmented flow quantitation comparison of portal vein flow measurements. Invest. Radiol. 34:176-180, 1999.

    Google Scholar 

  20. McKinnon, G. C., J. F. Debatin, D. R. Wetter, and G. K. von Schulthess. Interleaved echo planar flow quantitation. Magn. Reson. Med. 32:263-267, 1994.

    Google Scholar 

  21. Meier, D., S. Maier, and P. Bosiger. Quantitative flow measurements on phantoms and on blood vessels with MR. Magn. Reson. Med. 8:25-34, 1988.

    Google Scholar 

  22. Mohiaddin, R. H., S. L. Wann, R. Underwood, D. N. Firmin, S. Rees, and D. B. Longmore. Vena caval flow; assessment with cine MR velocity mapping. Radiology 177:537-541, 1990.

    Google Scholar 

  23. Mohiaddin, R. H., P. D. Gatehouse, and D. N. Firmin. Exercise-related changes in aortic flow measured with spiral echo-planar MR velocity mapping. J. Magn. Reson. Imaging 5:159-163, 1995.

    Google Scholar 

  24. Moran, P. R. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn. Reson. Imaging 1:197-203, 1982.

    Google Scholar 

  25. Nagel, E., A. Bornstedt, J. Hug, B. Schnackenburg, E. Wellnhofer, and E. Fleck. Noninvasive determination of coronary blood flow with magnetic resonance imaging: Comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn. Reson. Med. 41:544-549, 1999.

    Google Scholar 

  26. Pelc, L. R., N. J. Pelc, S. C. Rayhill, L. J. Castro, G. H. Glover, R. J. Herfkens, D. C. Miller, and R. B. Jeffrey. Arterial and venous blood flow: Noninvasive quantification with MR imaging. Radiology 185:809-812, 1992.

    Google Scholar 

  27. Pettigrew, R. I., W. Dannels, J. R. Galloway, T. Pearson, W. Millikan, J. M. Henderson, J. Peterson, and M. E. Bernardino. Quantitative phase-flow MR imaging in dogs by using standard sequences: Comparison with in vivo flow-meter measurements. Am. J. Roentgenol. 148:411-414, 1987.

    Google Scholar 

  28. Poutanen, V.-P., R. Kivisaari, A.-M. Häkkinen, S. Savolainen, P. Hekali, and C.-G. Standertskjöld-Nordenstam. Multiphase segmented k-space velocity mapping in pulsatile flow wave forms. Magn. Reson. Imaging 16:261-270, 1998.

    Google Scholar 

  29. Thomsen, C., M. Cortsen, L. Söndergaard, O. Henriksen, F. Ståhlberg. A segmented k-space velocity mapping protocol for quantification of renal artery blood flow during breathholding. J. Magn. Reson. Imaging 5:393-401, 1995.

    Google Scholar 

  30. Underwood, S. R., D. N. Firmin, R. H. Klipstein, R. S. O. Rees, and D. B. Longmore. Magnetic resonance velocity mapping: Clinical application of a new technique. Br. Heart J. 57:404-412, 1987.

    Google Scholar 

  31. Walker, P. G., S. Oyre, E. M. Pedersen, K. Houlind, F. S. A. Guenet, and A. P. Yoganathan. A new control volume method for calculating valvular regurgitation. Circulation 92:579-586, 1995.

    Google Scholar 

  32. Walker, P. G., K. Houlind, C. Djurhuus, W. Y. Kim, and E. M. Pedersen. Motion correction for the quantification of mitral regurgitation using the control volume method. Magn. Reson. Med. 43:726-733, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Halliburton, S.S., Moore, J.R. et al. Ultrafast Flow Quantification With Segmented k-Space Magnetic Resonance Phase Velocity Mapping. Annals of Biomedical Engineering 30, 120–128 (2002). https://doi.org/10.1114/1.1433489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1433489

Navigation