Skip to main content

Advertisement

Log in

The Concept of Using Multifrequency Energy Transmission to Reduce Hot Spots During Deep-Body Hyperthermia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a multifrequency energy transmission scheme for annular phased arrays in deep-body hyperthermia. The problem of frequency dependent resonance effects reported in hyperthermia phantom calibration studies, leading to skewed energy deposition patterns and unwanted energy maxima (hot spots), is addressed by comparing broadband energy transmission with conventional monofrequency excitation. A heating system, including microstrip spiral applicators placed at a cylindrical surface in four quadrants, was designed to study this new concept in a homogeneous phantom. The system includes an option to select three cw tones for simultaneous transmission within a frequency range from 232 to 936 MHz. Quantitative analyzes of E-field probe-scan data, generated in a 6 g/L saline phantom and evaluated by three figures of merits defined, demonstrate the possibility of adding up power in the focus site while smearing secondary maxima outside this volume. Random selection of the three sinusoids within this band shows a probability of 0.7 to improve performance compared to the conventional single-frequency heating. A numerical study of the electromagnetic problem was also implemented using the FD-TD method. Analysis shows acceptable agreement between measured and simulated two-dimensional energy deposition patterns. © 2002 Biomedical Engineering Society.

PAC02: 8754Br, 8719Pp, 8750Jk, 8440Ba

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berntsen, S., and S. N. Hornsleth. Retarded time absorbing boundary conditions. IEEE Trans. Antennas Propag. 42:1059-1064, 1994.

    Google Scholar 

  2. Dijk, J. D. P. V., D. Gonzalez-Gonzalez, and L. E. C. M. Blank. Deep local hyperthermia with four aperture array system of large waveguide radiators. Results of simulation and clinical application. Hyperthermic Oncology, edited by T. Sugahara and M. Saito. London: Taylor &; Francis, 1989, Vol. 1, pp. 573-575.

    Google Scholar 

  3. Es, C. A. V., H. K. Wyrdeman, A. A. C. D. Leeuw, J. Mooibroek, J. J. W. Lagendijk, and J. J. Batterman. Regional hyperthermia of pelvic tumors using the Utrecht Coaxial ''TEM'' system: A feasibility study. Int. J. Hyperthermia 11:173-186, 1995.

    Google Scholar 

  4. Fenn, A. J., and G. A. King. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radiofrequency phased-array hyperthermia. IEEE Trans. Biomed. Eng. 43:273-281, 1996.

    Google Scholar 

  5. Gavrilov, L. R., J. W. Hand, J. W. Hopewell, and A. J. Fenn. Preclinical evaluation of a two-channel hyperthermia system with adaptive phase control in a large animal. Int. J. Hyperthermia 15:495-507, 1999.

    Google Scholar 

  6. Hornsleth, S. N., L. Frydendal, O. Mella, O. Dahl, and P. Raskmark. Quality assurance for radiofrequency regional hyperthermia. Int. J. Hyperthermia 13:169-185, 1997.

    Google Scholar 

  7. Jacobsen, S. Reduction of hot spots in hyperthermia by means of broadband energy transmission. Electron. Lett. 34:1-2, 1998.

    Google Scholar 

  8. Jacobsen, S., A. Murberg, and P. R. Stauffer. Characterization of a transceiving antenna concept for microwave heating and thermometry of superficial tumors. Prog. Electromagn. Res. 18:105-125, 1998.

    Google Scholar 

  9. Johnson, R. C. Antenna Engineering Handbook, 3rd ed., New York: McGraw-Hill, 1993.

    Google Scholar 

  10. Kikuchi, M., Y. Amemiya, S. Egawa, Y. Onoyama, H. Kato, H. Kanai, Y. Saito, I. Tsukiyama, M. Hiraoka, S. Mizushina, T. Yamashita, Y. Nikawa, J. Matsuda, and M. Miyakawa. Guide to the use of hyperthermia equiment. 2. Microwave heating. Int. J. Hyperthermia 9:341-360, 1993.

    Google Scholar 

  11. Lagendijk, J. J. W., G. C. van Rhoon, S. N. Hornsleth, P. Wust, A. C. C. de Leeuw, C. J. Schneider, J. van der Zee, R. van Heek-Romanowski, S. A. Rahman, and C. Cromoll. ESHO quality assurance guidlines for regional hyperthemia. Int. J. Hyperthermia 14:125-133, 1998.

    Google Scholar 

  12. Leeuw, A. A. C. D., and J. J. W. Lagendijk. Design of a deep-body hyperthermia system based on ''Coaxial TEM'' applicator. Int. J. Hyperthermia 11:413-421, 1987.

    Google Scholar 

  13. Leybovich, L. B., R. J. Myerson, B. Emami, and W. L. Straube. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters. Int. J. Hyperthermia 7:917-935, 1991.

    Google Scholar 

  14. Montecchia, F. Microstrip-antenna design for hyperthermia treatment of superficial tumors. IEEE Trans. Biomed. Eng. 39:580-588, 1992.

    Google Scholar 

  15. Najafabadi, R. M., and A. Peterson. Focusing and impedance properties of conformable phased array antennas for microwave hyperthermia. IEEE Trans. Microwave Theory Tech. 44:1799-1802, 1996.

    Google Scholar 

  16. Paulsen, K. D., S. Geimer, J. Tang, and W. E. Boyse. Optimization of pelvic rate distributions with electromagnetic phased arrays. Int. J. Hyperthermia 15:157-186, 2000.

    Google Scholar 

  17. Raskmark, P., T. Larsen, and S. N. Hornsleth. Multiapplicator hyperthermia system description using scattering parameters. Int. J. Hyperthermia 10:143-151, 1994.

    Google Scholar 

  18. Raskmark, P. L., and S. N. Hornsleth. Analysis of multiapplicator systems using S parameters. Proceedings of the 6th International Congress on Hyperthermic Oncology (ICHO), Tucson, 27 April-1 May 1992, edited by E. W. Gerner. Vol. 1, 244 pp.

  19. Sathiaseelan, V., B. B. Mittal, A. Taflove, C. Reuter, M. J. Piket-May, and M. C. Pierce. Strategies for improving sigma-60 deep hyperthermia applicator performance. Proceedings of the 6th International Congress on Hyperthermic Oncology (ICHO), Tucson, 27 April-1 May 1992, edited by E. W. Gerner. Vol. 1, 244 pp.

  20. Schneider, C. J., J. D. P. van Dijk, A. A. C. D. Leeuw, P. Wust, and W. Baumhoers. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix. Int. J. Hyperthermia 10:733-747, 1994.

    Google Scholar 

  21. Tavlove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method. London: Artech House, 1995, 600 pp.

    Google Scholar 

  22. Turner, P. F. Regional hyperthermia with an annular phased array. IEEE Trans. Biomed. Eng. 31:106-114, 1984.

    Google Scholar 

  23. Turner, P. F., and T. Schaefermeyer. BSD-2000 approach for deep local and regional hyperthermia: Clinical utility. Strahlentherapie Onkologie 165:700-704, 1989.

    Google Scholar 

  24. van der Zee, J., D. Gonzalez-Gonzalez, G. C. van Rhoon, J. D. P. van Dijk, W. L. J. van Putten, and A. A. M. Hart. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced tumors: A prospective, randomized, multicentre trial. Lancet 355:1119-1125, 2000.

    Google Scholar 

  25. Vernon, C. C., J. W. Hand, S. B. Field, D. Machin, J. B. Whaley, J. van der Zee, H. L. J. van Putten, G. C. van Rhoon, J. D. P. van Dijk, D. G. Gonzalez, F. F. Lieu, P. Goodman, and M. D. Sherar. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer-Results from five randomized controlled trials. Int. J. Radiat. Oncol., Biol., Phys. 35:731-744, 1996.

    Google Scholar 

  26. Visser, A. G., and G. C. van Rhoon. Thermoradiotherapy and Thermochemotherapy, Vol 1: Biology, Physiology, and Physics, edited by M. H. Segenschmiedt, P. Fessenden, and C. C. Vernon. Berlin: Springer, 1995.

    Google Scholar 

  27. Wait, J. R., and M. Lumori. Focused heating in cylindrical targets-Part II. IEEE Trans. Microwave Theory Tech. 34:357-359, 1986.

    Google Scholar 

  28. Wust, P., H. Fähling, T. Helzel, M. Kniephoff, W. Wlodarczyk, G. Mönich, and R. Felix. Design and test of a new multiamplifier system with phase and amplitude control. Int. J. Hyperthermia 14:459-777, 1998.

    Google Scholar 

  29. Wust, P., H. Fähling, R. Felix, S. Rahman, R. D. Issels, H. Feldman, G. van Rhoon, and J. V. der Zee. Quality control of the SIGMA applicator using lamp phantom, a four-centre comparison. Int. J. Hyperthermia 11:755-768, 1995.

    Google Scholar 

  30. Wust, P., M. Seebass, J. Nadobny, P. Deuflhard, G. Mönich, and R. Felix. Simulation studies promote technological development of radiofrequency phased array hyperthermia. Int. J. Hyperthermia 12:477-494, 1996.

    Google Scholar 

  31. Yuan, X., J. W. Strohbehn, D. R. Lynch, and M. Johnsen. Theoretical investigation of a phased-array system with movable apertures. Int. J. Hyperthermia 6:227-240, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, S., Melandsø, F. The Concept of Using Multifrequency Energy Transmission to Reduce Hot Spots During Deep-Body Hyperthermia. Annals of Biomedical Engineering 30, 34–43 (2002). https://doi.org/10.1114/1.1430749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1430749

Navigation