Skip to main content

Advertisement

Log in

Corrosion Properties of Nanocrystalline Co–Cr Coatings

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nanocrystalline and conventional Co–Cr (ASTM F75) coatings were prepared by plasma spraying for possible orthopedic implant applications. Scanning electron microscopy and transmission electron microscopy were used to study the macrostructure and microstructure of the resultant sprayed coatings. The corrosion resistance was characterized by an in vitro potentiodynamic anodic polarization technique in a pseudophysiological solution. The nanocrystalline coating has higher porosity, lower corrosion current density, and less localized damage than that of the conventional one, demonstrating better application potential for orthopedic implants. A change in the atomic compositional difference between the grain interior and the grain boundary, the presence of residual strain in the grain interiors, and a change in the repassivation kinetics are discussed as possible explanations for the enhanced corrosion behavior observed. © 2001 Biomedical Engineering Society.

PAC01: 8165Kn, 8115Rs, 6146+w, 8780Rb, 6855-a, 5277Fv, 6837Hk, 8764Ee, 8107Bc, 6172Mm, 6837Lp

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aust, K. T., U. Erb, and G. Palumbo. Interface control for resistance to intergranular cracking. Mater. Sci. Eng., A176:329, 1994.

    Google Scholar 

  2. Bard, A. J., and L. R. Faulkner. Electrical Methods: Fundamentals and Applications. New York: Wiley, 1980, pp. 26–34.

    Google Scholar 

  3. Birringer, R.Nanocrystalline materials. Mater. Sci. Eng., A117:33–43, 1989.

    Google Scholar 

  4. Chang, E., W. J. Chang, B. C. Wang, and C. Y. Yang. Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium. I. Phase, microstructure, and bonding strength. J. Mater. Sci.: Mater. Med.8:193 and 201, 1997.

    Google Scholar 

  5. Deporter, D. A., P. A. Watson, R. M. Pilliar, M. Pharoah, D. C. Smith, M. Chipman, D. Locker, and A. Rydall. A prospective clinical study in humans of an endosseous dental implant partially covered with a powder-sintered porous coating: 3–to 4–year results. Int. J. Oral Maxillofac. Implants110:87, 1996.

    Google Scholar 

  6. Elkedim, O., H. S. Cao, C. Meunier, and E. Gaffet. Preparation of nanocrystalline copper by hot and cold compaction: Characterization of mechanical and electrochemical properties. Mater. Sci. Forum843:269–272, 1998.

    Google Scholar 

  7. Hantzsche, H. In: Proceedings of the 7th International Metal Spraying Conference, London, U.K., 10–14 September 1973, Paper No. 16, Abington, Cambridge, England: Welding Institute, 1974.

    Google Scholar 

  8. Heimann, R. B. Plasma-Spray Coating: Principles and Applications. New York: VCH, 1996, p. 19.

    Google Scholar 

  9. Huang, B., R. J. Perez, and E. J. Lavernia. Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen. Mater. Sci. Eng., A255:124–132, 1998.

    Google Scholar 

  10. Hulbert, S. F., S. J. Morrison, and J. J. Klawitter. Tissue reaction to three ceramics of porous and nonporous structures. J. Biomed. Mater. Res.6:347, 1972.

    Google Scholar 

  11. Jiang, H. G., M. L. Lau, and E. J. Lavernia. Grain growth behavior of nanocrystalline Inconel 718 and Ni powder and coatings. Nanostruct. Mater.10:169, 1998.

    Google Scholar 

  12. Jiang, H., M. Rühle, and E. J. Lavernia. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res.14:549, 1999.

    Google Scholar 

  13. Khor, K. A., C. S. Yip, and P. Cheang. Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4V/hydroxyapatite composite coatings. J. Mater. Process. Technol.71:280, 1997.

    Google Scholar 

  14. Klawitter, J. J., and S. F. Hulbert, Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J. Biomed. Mater. Res. Symp.5:61, 1971.

    Google Scholar 

  15. Lau, M. L., and E. J. Lavernia. Microstructural Evolution and Oxidation Behavior of Spraying. Mater. Sci. Eng., A272:222–229, 1999.

    Google Scholar 

  16. Lau, M. L., E. Strock, A. Fabel, C. J. Lavernia, and E. J. Lavernia. In: Multicomponent Ultrafine Microstructures, edited by L. E. McCandlish.

  17. Luton, M. J., C. S. Jayanth, M. M. Disko, S. Matras, and J. Vallone. Synthesis and characterization of nanocrystalline Co-Cr coatings by plasma spraying. Mater. Res. Soc. Symp. Proc.132:79–86, 1989.

    Google Scholar 

  18. Maniatopoulos, C., R. M. Pilliar, and D. C. Smith. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model. J. Biomed. Mater. Res.20:1309, 1986.

    Google Scholar 

  19. Mauer, R., U. Erb, and H. Gleiter. Intercrystalline corrosion: Factors controlling the enhanced corrosion near grain boundaries. Mater. Sci. Eng.63:L13, 1984.

    Google Scholar 

  20. Mishin, J., M. Vardelle, J. Lesinski, and P. Fauchais. Two-colour pyrometer for the statistical measurement of the surface temperature of particles under thermal plasma conditions. J. Phys. E20:620–625, 1987.

    Google Scholar 

  21. Pawlowski, L. The Science and Engineering of Thermal Spray Coatings. New York: Wiley, 1995, p. 86.

    Google Scholar 

  22. Rofagha, R., R. Langer, A. M. EI-Sherik, U. Erb, G. Palumbo, and K. T. Aust. The corrosion behavior of nanocrystalline nickel. Scr. Metall. Mater.25:2867, 1991.

    Google Scholar 

  23. Rofagha, R., U. Erb, D. Ostander, G. Palumbo, and K. T. Aust. The effects of grain size and phosphorous on the corrosion of nanocrystalline Ni-P alloys. Nanostruct. Mater.2:1, 1993.

    Google Scholar 

  24. Sobolev, V. V., J. M. Guilemany, and A. J. Martin. In: Proceedings of the 15th International Thermal Spray Conference, edited by C. Coddet. ASM International, Nice, France: ASM International, 1998, Vol. 1, p. 503.

    Google Scholar 

  25. Tellkamp, V. L., S. Dallek, D. Cheng, and E. J. Lavernia. Grain growth behavior of a nanostructured 5083 Al-Mg alloy. J. Mater. Res.16:938, 2001.

    Google Scholar 

  26. Thorpe, S. J., B. Ramaswami, and A. T. Aust. Corrosion and Auger studies of a nickel-base metal-metalloid glass. I. The effect of elemental interactions on passivity in the general corrosion of metglass 2826A. J. Electrochem. Soc.135:2162, 1988.

    Google Scholar 

  27. Vinogradov, A., T. Mimaki, S. Hashimoto, and R. Valiev. On corrosion of ultrafine grained copper produced by equi-channel angular pressing. Mater. Sci. Forum312–314:641–646, 1999.

    Google Scholar 

  28. Westhoff, R., G. Trapaga, and J. Szekely. Plasma-particle interactions in plasma spraying systems. Metall. Trans. B23:683, 1992.

    Google Scholar 

  29. Yamashita, M., T. Mimaki, S. Hashimoto, and S. Miura. Intergranular corrosion of copper and alpha-Cu-Al alloy bicrystals. Philos. Mag. A63:707, 1991.

    Google Scholar 

  30. Young, F., M. Spector, and C. H. Kresch. Porous titanium endosseous dental implants in Rhesus monkeys: Microradiography and histological evaluation. J. Biomed. Mater. Res.13:843, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, D., Tellkamp, V.L., Lavernia, C.J. et al. Corrosion Properties of Nanocrystalline Co–Cr Coatings. Annals of Biomedical Engineering 29, 803–809 (2001). https://doi.org/10.1114/1.1397790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1397790

Navigation