Skip to main content
Log in

Ligand Coated Nanosphere Adhesion to E- and P-Selectin under Static and Flow Conditions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The heterogeneous distribution of endothelial cell adhesion molecules (ECAMs) on the lumenal surface of vascular endothelium provides an opportunity to deliver drugs to select tissues. The targeting could be achieved by using carriers whose outer surface has a ligand for a selectively expressed ECAM. The carriers would interact with the endothelium in a fluid dynamic environment and in many of these schemes nanoparticles would be used. It is unclear what role various parameters (e.g., ligand–ECAM chemistry, fluid shear) will have on the adhesion of the nanoparticles to the endothelium. To facilitate studies in this area, we have developed a prototypical in vitro model that allows investigation of nanoparticle adhesion. We coated polystyrene nanospheres with a humanized mAb (HuEP5C7.g2) that recognizes the ECAMs E- and P-selectin. Adhesion assays revealed that HuEP5C7.g2 nanospheres exhibit augmented, specific adhesion to selectin presenting cellular monolayers and that the adhesion can be affected by the fluid shear. These results; (i) strongly suggest that HuEP5C7.g2 could be used to target nanoparticles to selectin presenting endothelium; (ii) demonstrate that fluid shear can affect nanoparticle adhesion; and (iii) define a system which can be used to study the effects of various system parameters on nanoparticle adhesion. © 2001 Biomedical Engineering Society.

PAC01: 8235Pq, 8714Ee, 8719Uv, 8716-b

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London)374:539–542, 1995.

    Google Scholar 

  2. Anderson, W. F.Human gene therapy. Nature (London)392:25–30, 1998.

    Google Scholar 

  3. Bendas, G., A. Krause, U. Bakowsky, J. Vogel, and U. Rothe. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int. J. Pharm.181:79–93, 1999.

    Google Scholar 

  4. Bendas, G., A. Krause, R. Schmidt, J. Vogel, and U. Rothe. Selectins as new targets for immunoliposome-mediated drug delivery. A potential way of anti-inflammatory therapy. Pharm. Acta. Helv.73:19–26, 1998.

    Google Scholar 

  5. Bevilacqua, M. P., J. S. Pober, D. L. Mendrick, R. S. Cotran, and M. A. Gimbrone, Jr.Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U.S.A.84:9238–9242, 1987.

    Google Scholar 

  6. Bloemen, P. G. M., P. A. J. Henricks, L. van Bloois, M. C. van den Tweel, A. C. Bloem, F. P. Nijkamp, D. J. A. Crommelin, and G. Storm. Adhesion molecules: A new target for immunoliposome-mediated drug delivery. FEBS Lett.357:140–144, 1995.

    Google Scholar 

  7. Bradbury, M. W. B.The blood-brain barrier. Exp. Physiol.78:453–472, 1993.

    Google Scholar 

  8. Cozens-Roberts, C., J. A. Quinn, and D. A. Lauffenburger. Receptor-mediated adhesion phenomena: Model studies with the radial flow detachment assay. Biophys. J.58:107–125, 1990.

    Google Scholar 

  9. Crutchfield, K. L., V. R. Shinde Patil, C. J. Campbell, C. A. Parkos, J. R. Allport, and D. J. Goetz. CD11b/CD18-coated microspheres attach to E-selectin under flow. J. Leuk. Biol.67:196–205, 2000.

    Google Scholar 

  10. Cybulsky, M. I., and M. A. Gimbrone, Jr.Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science251:788–791, 1991.

    Google Scholar 

  11. Duplaa, C., T. Couffinhal, L. Labat, C. Moreau, M. E. Petit-Jean, M. S. Doutre, J. M. Lamaziere, and J. Bonnet. Monocyte/macrophage recruitment and expression of endothelial adhesion proteins in human atherosclerotic lesions. Atherosclerosis (Berlin)121:253–266, 1996.

    Google Scholar 

  12. Fleming, S., and D. B. Jones. Antigenic heterogeneity of renal endothelium. J. Pathol.158:319–323, 1989.

    Google Scholar 

  13. Fox, S. B., G. D. H. Turner, K. C. Gatter, and A. L. Harris. The increased expression of adhesion molecules ICAM-3, E-and P-selectins on breast cancer endothelium. J. Pathol.177:369–376, 1995.

    Google Scholar 

  14. Goetz, D. J., D. M. Greif, R. T. Camphausen, S. Howes, K. M. Comess, K. R. Snapp, G. S. Kansas, and F. W. Luscinskas. Isolated P-selectin glycoprotein-1 dynamic adhesion to P-and E-selectin. J. Cell Biol.137:509–519, 1997.

    Google Scholar 

  15. Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: Basic principles and applications. Thromb. Haemostasis55:415–435, 1986.

    Google Scholar 

  16. Gotsch, U., U. Jager, M. Dominis, and D. Vestweber. Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes. Commun.2:7–14, 1994.

    Google Scholar 

  17. Gref, R., Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science263:1600–1603, 1994.

    Google Scholar 

  18. Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin-mediated neutrophil adhesion. Biophys. J.63:35–57, 1992.

    Google Scholar 

  19. He, X., Z. Xu, J. Melrose, A. Mullowney, M. Vasquez, C. Queen, V. Vexler, C. Klingbeil, M. S. Co, and E. L. Berg. Humanization and pharmacokinetics of a monoclonal antibody with specificity for both E-and P-selectin. J. Immunol.160:1029–1035, 1998.

    Google Scholar 

  20. Irie, S., and M. Tavassoli. Mapping of the rat liver endothelial membrane with lectins and glycosylated ferritins. Am. J. Anat.177:403–413, 1986.

    Google Scholar 

  21. Johnson-Tidey, R. R., J. L. McGregor, P. R. Taylor, and R. N. Poston. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. Am. J. Pathol.144:952–961, 1994.

    Google Scholar 

  22. Kansas, G. S.Selectins and their ligands: Current concepts and controversies. Blood88:3259–3287, 1996.

    Google Scholar 

  23. Kunkel, E. J., and K. Ley. Distinct phenotype of E-selectin-deficient mice: E-selectin is required for slow leukocyte rolling in vitro. Circ. Res.79:1196–1204, 1996.

    Google Scholar 

  24. Lawrence, M. B., and T. A. Springer. Leukocytes roll on a selectin at physiologic flow rates: Distinction from the prerequisite for adhesion through integrins. Cell65:859–873, 1991.

    Google Scholar 

  25. Lawrence, M. B., C. W. Smith, S. G. Eskin, and L. V. McIntire. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood75:227–237, 1990.

    Google Scholar 

  26. Less, J. R., T. C. Skalak, E. M. Sevick, and R. K. Jain. Microvascular architecture in a mammary carcinoma: Branching patters and vessel dimensions. Cancer Res.51:265–723, 1991.

    Google Scholar 

  27. Lok, B. K., Y. Cheng, and C. R. Robertson. Protein adsorption on crosslinked polydimethylsiloxane using total internal reflection fluorescence. J. Colloid Interface Sci.91:104–116, 1983.

    Google Scholar 

  28. Luscinskas, F. W., and M. A. Gimbrone. Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu. Rev. Med.47:413–421, 1996.

    Google Scholar 

  29. Luscinskas, F. W., H. Ding, P. Tan, D. Cumming, T. F. Tedder, and M. E. Gerritsen. L-and P-selectins, but not CD49d (VLA-4) integrins, mediate monocyte initial attachment to TNF-α-activated vascular endothelium under flow in vitro. J. Immunol.156:326–335, 1996.

    Google Scholar 

  30. Mayer, B., H. Spatz, I. Funke, J. P. Johnson, and F. W. Schildberg. De novo expression of the cell adhesion molecule E-selectin on gastric cancer endothelium. Langenbecks Arch. Surg.383:81–86, 1998.

    Google Scholar 

  31. McEver, R. P., J. H. Beckstead, K. L. Moore, L. Marshall-Carlson, and D. F. Bainton. GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest.84:92–99, 1989.

    Google Scholar 

  32. Melder, R. J., M. L. L., S. Yamada, C. Ohkubo, and R. K. Jain. Selectin-and integrin-mediated T-lymphocyte rolling and arrest on TNF-a-activated endothelium: Augmentation by erythrocytes. Biophys. J.69:2131–2138, 1995.

    Google Scholar 

  33. Patel, K. D., M. U. Nollert, and R. P. McEver. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol.131:1893–1902, 1996.

    Google Scholar 

  34. Ponder, B. A. J.Organ-related differences in binding of Dolichos biflorus agglutinin to vascular endothelium. Dev. Biol.96:535–541, 1983.

    Google Scholar 

  35. Sanders, W. E., R. W. Wilson, C. M. Ballantyne, and A. L. Beaudet. Molecular cloning and analysis of in vivo expression of murine P-selectin. Blood80:795–800, 1992.

    Google Scholar 

  36. Schaffer, D. V., and D. A. Lauffenburger. Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J. Biol. Chem.273:28004–28009, 1998.

    Google Scholar 

  37. Shinde Patil, V. R., C. J. Campbell, Y. H. Yun, S. M. Slack, and D. J. Goetz. Particle diameter influences adhesion under flow. Biophys. J.80:1733–1743, 2001.

    Google Scholar 

  38. Spragg, D. D., D. R. Alford, R. Greferath, C. E. Larsen, K. Lee, G. C. Gurtner, M. I. Cybulsky, P. F. Tosi, C. Nicolau, and M. A. Gimbrone, Jr.Immunotargeting of liposomes to activated vascular endothelial cells: A strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. U.S.A.94:8795–8800, 1997.

    Google Scholar 

  39. Springer, T. A.Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell76:301–314, 1994.

    Google Scholar 

  40. Subramanian, A., P. Ranganathan, and S. L. Diamond. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol.17:873–877, 1999.

    Google Scholar 

  41. Swift, D. G., R. G. Posner, and D. A. Hammer. Kinetics of adhesion of IgE-sensitized rat basophilic leukemia cells to surface-immobilized antigen in couette flow. Biophys. J.75:2597–2611, 1998.

    Google Scholar 

  42. Torchilin, V. P.Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents. Immunomethods4:224–258, 1994.

    Google Scholar 

  43. Tseng, W.-C., F. R. Haselton, and T. D. Giorgio. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem.41:25641–25647, 1997.

    Google Scholar 

  44. Tsurushita, N., H. Fu, J. Melrose, and E. L. Berg. Epitope mapping of mouse monoclonal antibody EP-5C7 which neutralizes both human E-and P-selectin. Biochem. Biophys. Res. Commun.242:197–201, 1998.

    Google Scholar 

  45. Zhu, D., and B. U. Pauli. Generation of monoclonal antibodies directed against organ-specific endothelial cell surface determinants. J. Histochem. Cytochem.39:1137–1142, 1991.

    Google Scholar 

  46. Dickerson, J. B., J. E. Blackwell, J. J. Ou, V. R. Shinde Patil, and D. J. Goetz. Limited adhesion of biodegradable microspheres to E-and P-selectin under flow. Biotechnol. Bioeng.73:500–509, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackwell, J.E., Dagia, N.M., Dickerson, J.B. et al. Ligand Coated Nanosphere Adhesion to E- and P-Selectin under Static and Flow Conditions. Annals of Biomedical Engineering 29, 523–533 (2001). https://doi.org/10.1114/1.1376697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1376697

Navigation