Skip to main content
Log in

Computational Models of Antibody-Based Tumor Imaging and Treatment Protocols

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present improved computational models for investigating monoclonal antibody-based protocols for diagnostic imaging and therapy of solid tumors. Our earlier models used a boundary condition (Dirichlet) that specified concentrations of diffusing molecular species at the interface between a prevascular tumor nodule and surrounding normal tissue. Here we introduce a concentration-dependent flux boundary condition with finite rates of diffusion in the normal tissue. We then study the effects of this new condition on the tumor's temporal uptake and spatial distribution of radiolabeled targeting agents. We compare these results to ones obtained with the Dirichlet boundary condition and also conduct parameter sensitivity analyses. Introducing finite diffusivity for any molecular species in normal tissue retards its delivery to and removal from the tumor nodule. Effects are protocol- and dose regimen-dependent; generally, however, mean radionuclide concentration and tumor-to-blood ratio declined, whereas relative exposure and mean residence time increased. Finite diffusivity exacerbates the negative effects of antigen internalization. Also, the sensitivity analyses show that mean concentration and tumor-to-blood ratio are quite sensitive to transcapillary permeability and lymphatic efflux values, yet relatively insensitive to precise values of diffusion coefficients. Our analysis underscores that knowledge of antigen internalization rates and doses required to saturate antigen in the tumor will be important for exploiting antibody-based imaging and treatment approaches. © 2001 Biomedical Engineering Society.

PAC01: 8758-b, 8710+e, 8753-j

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc. Natl. Acad. Sci. U.S.A.94:1785–1790, 1997.

    Google Scholar 

  2. Chary, S. R., and R. K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. U.S.A.86:5385–5389, 1989.

    Google Scholar 

  3. Clauss, M. A., and R. K. Jain. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res.50:3487–3492, 1990.

    Google Scholar 

  4. Crone, C., and D. G. Levitt. Capillary permeability to small solutes. In: The Cardiovascular System, edited by E. M. Renkin, C. C. Michel, and S. R. Geiger. Bethesda, MD: American Physiological Society, 1984, pp. 411–466.

    Google Scholar 

  5. Fujimori, K., D. R. Fisher, and J. N. Weinstein. Integrated microscopic-macroscopic pharmacology of monoclonal antibody radioconjugates: The radiation dose distribution. Cancer Res.51:4821–4827, 1991.

    Google Scholar 

  6. Fujimori, K., D. G. Covell, J. E. Fletcher, and J. N. Weinstein. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab)2, and Fab in tumors. Cancer Res.49:5656–5663, 1989.

    Google Scholar 

  7. Fujimori, K., D. G. Covell, J. E. Fletcher, and J. N. Weinstein. A modeling analysis of monoclonal antibody percolation through tumors: A binding-site barrier. J. Nucl. Med.31:1191–1198, 1990.

    Google Scholar 

  8. Goodwin, D. A., C. F. Meares, M. J. McCall, M. McTigue, and W. Chaovapong. Pretargeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J. Nucl. Med.29:226–234, 1988.

    Google Scholar 

  9. Hnatowich, D. J., F. Virzi, and M. Rusckowki. Investigations of avidin and biotin for imaging applications. J. Nucl. Med.28:1294–1302, 1987.

    Google Scholar 

  10. Juweid, M., R. Neumann, C. Paik, M. J. Perez-Bacete, J. Sato, W. van Osdol, and J. N. Weinstein. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res.52:5144–5153, 1992.

    Google Scholar 

  11. Khawli, L. A., M. M. Alauddin, G. K. Miller, and A. L. Epstein. Improved immunotargeting of tumors with biotinylated monoclonal antibodies and radiolabeled streptavidin. Antibody, Immunoconjugates, Radiopharm.6:13–27, 1993.

    Google Scholar 

  12. LeDoussal, J. M., M. Martin, M. Delaage, and J. Barbet. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: Enhanced divalent hapten affinity for cell bound antibody conjugate. J. Nucl. Med.30:1358–1366, 1989.

    Google Scholar 

  13. Nakamoto, Y., T. Saga, H. Sakahara, Z. Yao, M. Zhang, N. Sato, S. Zhao, H. Nakada, I. Yamashina, and J. Konishi. Three-step tumor imaging with biotinylated monoclonal antibody, streptavidin and 111In-DTPA-biotin. Nucl. Med. Biol.25:95–99, 1998.

    Google Scholar 

  14. Nicholson, C., and L. Tao. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J.65:2277–2290, 1993.

    Google Scholar 

  15. Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissue. Cancer Res.44:238–244, 1984.

    Google Scholar 

  16. Oehr, P., J. Westermann, and H. J. Biersack. Streptavidin and biotin as potential tumor imaging agents [letter]. J. Nucl. Med.29:728–729, 1988.

    Google Scholar 

  17. Paganelli, G.et al.Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res.51:5960–5966, 1991.

    Google Scholar 

  18. Paganelli, G.et al.Radioimmunoguided surgery using iodine-125-labeled biotinylated monoclonal antibodies and cold avidin. J. Nucl. Med.35:1970–1975, 1994.

    Google Scholar 

  19. Pimm, M. V., H. F. Fells, A. C. Perkins, and R. W. Baldwin. Iodine-131 and indium-111 labeled avidin and streptavidin for pretargeted immunoscintigraphy with biotinylated and anti-tumor monoclonal antibody. Nucl. Med. Comm.9:931–941, 1988.

    Google Scholar 

  20. Renkin, E. M.Multiple pathways of capillary permeability. Circ. Res.41:735–743, 1977.

    Google Scholar 

  21. Rippe, B., and B. Haraldsson. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol. Scand.131:411–428, 1987.

    Google Scholar 

  22. Saga, T., R. D. Neumann, T. Heya, J. Sato, S. Kinuya, N. Le, C. H. Paik, and J. N. Weinstein. Targeting cancer micrometastases with monoclonal antibodies: A binding-site barrier. Proc. Natl. Acad. Sci. U.S.A.92:8999–9003, 1995.

    Google Scholar 

  23. Sharkey, R. M., H. Karacay, G. L. Griffiths, T. M. Behr, R. D. Blumenthal, M. J. Mattes, H. J. Hansen, and D. M. Goldenberg. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug. Chem.8:595–604, 1997.

    Google Scholar 

  24. Siccardi, A. G., G. Paganelli, A. E. Pontiroli, M. Pelagi, P. Magnani, G. Viale, G. Faglia, and F. Fazio. In vivo imaging of chromogranin A-positive endocrine tumours by three-step monoclonal antibody targeting. Eur. J. Nucl. Med.23:1455–1459, 1996.

    Google Scholar 

  25. Stickney, D. R., L. D. Anderson, J. B. Slater, C. N. Ahlem, G. A. Kirk, S. A. Schweighardt, and J. M. Frincke. Bifunctional antibody: A binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res.51:6650–6655, 1991.

    Google Scholar 

  26. Sung, C., and W. W. van Osdol. Pharmacokinetic comparison of direct antibody targeting with pretargeting protocols based on streptavidin-biotin binding [see comments]. J. Nucl. Med.36:867–876, 1995.

    Google Scholar 

  27. Sung, C., W. W. van Osdol, T. Saga, R. D. Neumann, R. L. Dedrick, and J. N. Weinstein. Streptavidin distribution in metastatic tumors pretargeted with a biotinylated monoclonal antibody: Theoretical and experimental pharmacokinetics. Cancer Res.54:2166–2175, 1994.

    Google Scholar 

  28. van Osdol, W., K. Fujimori, and J. N. Weinstein. An analysis of monoclonal antibody distribution in microscopic tumor nodules: Consequences of a “binding site barrier.” Cancer Res.51:4776–4784, 1991.

    Google Scholar 

  29. van Osdol, W. W., C. Sung, R. L. Dedrick, and J. N. Weinstein. A distributed pharmacokinetic model of two-step imaging and treatment protocols: Application to streptavidin-conjugated monoclonal antibodies and radiolabeled biotin. J. Nucl. Med.34:1552–1564, 1993.

    Google Scholar 

  30. Weinstein, J. N., R. R. Eger, D. G. Covell, C. D. Black, J. Mulshine, J. A. Carrasquillo, S. M. Larson, and A. M. Keenan. The pharmacology of monoclonal antibodies. Ann. N.Y. Acad. Sci.507:199–210, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praxmarer, M., Sung, C., Bungay, P.M. et al. Computational Models of Antibody-Based Tumor Imaging and Treatment Protocols. Annals of Biomedical Engineering 29, 340–358 (2001). https://doi.org/10.1114/1.1359453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1359453

Navigation