Skip to main content
Log in

Numerical Simulation of Enhanced External Counterpulsation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Enhanced external counterpulsation (EECP) is a noninvasive, counterpulsative method to provide temporary aid to the failing heart by sequentially inflating cuffs on the lower extremity out-of-phase with the left ventricle. Optimization of the method necessitates consideration of the hemodynamics created by EECP and the mode of action providing patient benefit. A computational model based on the governing one-dimensional equations is developed that simulates cardiovascular hemodynamics during EECP. The model includes a 30-element arterial system including the left ventricle, bifurcations, and peripheral arterial vessels. Effects of vessel collapse as external pressure is applied, arterial refilling on pressure release, changes in aortic pressure, and shear stress generated in the arteries are each investigated. Device parameters are systematically varied to determine their effect on system performance. Results show the potential for significant collapse and shear augmentation throughout the arteries of the lower extremity. Performance is strongly influenced by the mean level of external pressurization and the timing of cuff inflation, but less so by the relative timing and pressure differences between cuff segments. © 2001 Biomedical Engineering Society.

PAC01: 8719Uv, 0260Cb, 8710+e, 8780-y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsterdam, E. A.et al., Clinical assessment of external pressure circulatory assistance in acute myocardial infarction. Am. J. Cardiol.45:349–356, 1980.

    Google Scholar 

  2. Anderson, D. A., J. C. Tannenhill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. New York: McGraw Hill, 1984.

  3. Applebaum, R. M., R. Kasliwal, P. A. Tunick, N. Konecky, E. Katz, N. Trehan, and I. Kronzon. Sequential external counterpulsation increases cerebral and renal blood flow. Am. Heart J.133:611–615, 1997.

    Google Scholar 

  4. Arora, R. R., T. M. Chou, D. Jain, B. Fleishman, L. Crawford, T. McKiernan, and R. W. Nesto. The multicenter study of enhanced external counterpulsation (MUST-EECP): Effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J. Am. Coll. Cardiol.33:1833–1840, 1999.

    Google Scholar 

  5. Avolio, A. P. Multi-branched model of the human arterial system. Med. Biol. Eng. Comput.18:709–718, 1980.

    Google Scholar 

  6. Bai, J., D. Wu, and J. Zhang. A simulation study of external counterpulsation. Comput. Biol. Med.24:145–156, 1994.

    Google Scholar 

  7. Bai, J., K. Ying, and D. Jaron. Cardiovascular responses to external counterpulsation: A computer simulation. Med. Biol. Eng. Comput.30:317–323, 1992.

    Google Scholar 

  8. Berger, D. S., J. K.-J. Li, and A. Noordergraf. Differential effects of wave reflections and peripheral resistance on aortic blood pressure: A model-based study. Am. J. Physiol.266:35:H1626-H1642, 1994.

    Google Scholar 

  9. Berger, D. S., J. K.-J. Li, and A. Noordergraf. Arterial wave propagation phenomena, ventricular work, and power dissipation. Ann. Biomed. Eng.23:804–811, 1995.

    Google Scholar 

  10. Bottom, K. E. A numerical model of cardiovascular fluid mechanics during exernal cardiac assist. S.M. thesis. Massachusetts Institute of Technology, May 1999.

  11. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves. J. Biomech. Eng.102:318–324, 1980.

    Google Scholar 

  12. Hseih, H. J., N. Q. Li, and J. A. Frangos. Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am. J. Physiol.260:H642-H646, 1991.

    Google Scholar 

  13. Kamiya, A., R. Bukhari, and T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol.46:127–137, 1984.

    Google Scholar 

  14. Kamm, R. D., and A. H. Shapiro. Unsteady flow in a collapsible tube subjected to external pressure or body forces. J. Fluid Mech.95:1–78, 1979.

    Google Scholar 

  15. Lawson, W. E.et al., Efficacy of enhanced external counterpulsation in the treatment of angina pectoris. Am. J. Cardiol.70:859–862, 1992.

    Google Scholar 

  16. Lawson, W. E., J. C. Hui, Z. S. Zheng, L. Burgen, L. Jiang, O. Lillis, Z. Oster, H. Soroff, and P. Cohn. Improved exercise tolerance following enhanced external counterpulsation: Cardiac or peripheral effect?Cardiology87:271–275, 1996.

    Google Scholar 

  17. Lueptow, R. M., J. M. Karlen, R. D. Kamm, and A. H. Shapiro. Circulatory model studies of external cardiac assist by counterpulsation. Cardiovasc. Res.15:443–455, 1981.

    Google Scholar 

  18. Ozawa, E. T. A numerical model of the cardiovascular system for clinical assessment of the hemodynamic state. PhD thesis. Massachusetts Institute of Technology, September 1996.

  19. Parmley, W. W., K. Chatterjee, Y. Charuzi, and H. U. Swan. Hemodynamic effects of noninvasive systolic unloading (nitroprusside) and diastolic augmentation (external counterpulsation) in patients with acute myocardial infarction. Am. J. Cardiol.33:819–825, 1974.

    Google Scholar 

  20. Pedley, T. J., R. C. Schroter, and M. F. Sudlow. Energy losses and pressure drop in models of human airways. Respir. Physiol.9:371–386, 1970.

    Google Scholar 

  21. Soran, A. U., L. E. Crawford, V. M. Schneider, and A. M. Feldman. Enhanced external counterpulsation in the management of patients with cardiovascular disease. Clin. Cardiol.22:173–178, 1999.

    Google Scholar 

  22. Sorroff, H. S., C. T. Cloutier, W. C. Birtwell, L. A. Begley, and J. V. Messer. External counterpulsation, management of cardiogenic shock after myocardial infarction. J. Am. Med. Assoc.229:1441–1450, 1974.

    Google Scholar 

  23. Stettler, J. C., P. Niederer, and M. Anliker. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: Mathematical model and prediction of normal pulse patterns. Ann. Biomed. Eng.9:145–164, 1981.

    Google Scholar 

  24. Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res.35:117–126, 1974.

    Google Scholar 

  25. Suga, H., K. Sagawa, and L. Demer. Determinants of instantaneous pressure in canine left ventricle: Time and volume specification. Circ. Res.46:256–263, 1980.

    Google Scholar 

  26. Sumpio, B. E. Hemodynamic forces and the biology of the endothelium: signal transduction pathways in endothelial cells subjected to physical forces in vitro. J. Vas. Surg.13:744–746, 1991.

    Google Scholar 

  27. Suresh, K., S. Simandl, W. E. Lawson, J. C. Hui, O. Lillis, L. Burger, T. Guo, and P. F. Cohn. Maximizing the hemodynamic benefit of enhanced external counterpulsation. Clin. Cardiol.21:649–653, 1998.

    Google Scholar 

  28. Wolf, T. An experimental/theoretical investigation of parallel inhomogeneities in respiratory flows. PhD thesis. Massachusetts Institute of Technology, June 1990.

  29. Young, D. F., and F. Y. Tsai. Flow characteristics in models of arterial stenoses-II. Unsteady flow. J. Biomech.6:547–559, 1973.

    Google Scholar 

  30. Zheng, Z. S.et al., Sequential external counterpulsation (SECP) in China. Trans. Am. Soc. Artif. Intern. Organs29:599–603, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, E.T., Bottom, K.E., Xiao, X. et al. Numerical Simulation of Enhanced External Counterpulsation. Annals of Biomedical Engineering 29, 284–297 (2001). https://doi.org/10.1114/1.1359448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1359448

Navigation