Skip to main content

Modeling Tracer Transport in an Osteon under Cyclic Loading

Abstract

A mathematical model is developed to explain the fundamental conundrum as to how during cyclic mechanical loading there can be net solute (e.g., nutrient, tracer) transport in bone via the lacunar-canalicular porosity when there is no net fluid movement in the canaliculi over a loading cycle. Our hypothesis is that the fluid space in an osteocytic lacuna facilitates a nearly instantaneous mixing process of bone fluid that creates a difference in tracer concentration between the inward and outward canalicular flow and thus ensures net tracer transport to the osteocytes during cyclic loading, as has been shown experimentally. The sequential spread of the tracer from the osteonal canal to the lacunae is investigated for an osteon experiencing sinusoidal loading. The fluid pressure in the canaliculi is calculated using poroelasticity theory and the mixing process in the lacunae is then simulated computationally. The tracer concentration in lacunae extending radially from the osteonal canal to the cement line is calculated as a function of the loading frequency, loading magnitude, and number of loading cycles as well as the permeability of the lacunar-canalicular porosity. Our results show that net tracer transport to the lacunae does occur for cyclic loading. Tracer transport is found to increase with higher loading magnitude and higher permeability and to decrease with increasing loading frequency. This work will be helpful in designing experimental studies of tracer movement and bone fluid flow, which will enhance our understanding of bone metabolism as well as bone adaptation. © 2000 Biomedical Engineering Society.

PAC00: 8716Uv, 8719Rr, 8716Ac

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Cane, V., G. Marotti, G. Volpi, D. Zaffe, S. Palazzini, F. Remaggi, and M. A. Muglia. Size and density of osteocyte lacunae in different regions of long bones. Calcif. Tissue Int.34:558–563, 1982.

    Google Scholar 

  2. Cooper, R. R., J. W. Milgram, and R. A. Robinson. Morphology of the osteon. J. Bone Jt. Surg. 48A:1239–1271, 1966.

    Google Scholar 

  3. Cowin, S. C., S. Weinbaum, and Y. Zeng. A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28:1281–1296, 1995.

    Google Scholar 

  4. Cowin, S. C. Bone poroelasticity. J. Biomech. 32:218–238, 1999.

    Google Scholar 

  5. Curtis, T. A., S. H. Ashrafi, and D. F. Weber. Canalicular communication in the cortices of human long bones. Anat. Rec. 212:336–344, 1985.

    Google Scholar 

  6. Dilliman, R. M. Movement of ferritin in the 2-day-old chick femur. Anat. Rec. 209:445–453, 1984.

    Google Scholar 

  7. Fritton, S. P., K. J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: spatial uniformity and selfsimilarity of low magnitude strains. J. Biomech. 33:317–325, 2000.

    Google Scholar 

  8. Fyhrie, D. P. and J. H. Kimura. Cancellous bone biomechanics. J. Biomech. 32:1139–1148, 1999.

    Google Scholar 

  9. Haines, R. W., L. Mehta, and A. Mohiuddin. Nutrition of interstitial lamellae of bone. Anat. Anz. Jena. 154:233–236, 1983.

    Google Scholar 

  10. Ham, W. Some histophysiological problems peculiar to calcified tissues. J. Bone Jt. Surg. 34A:706–728, 1952.

    Google Scholar 

  11. Hillsley, M. V. and J. A. Frangos. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone. J. Bone Miner. Res. 11:114–124, 1996.

    Google Scholar 

  12. Hughes, S. P. F. and P. J. Kelly. The mechanism of ion transfer in bone. In: Bone Circulation, edited by J. Arlet, R. P. Ficat, and D. S. Hungerford. Baltimore: Williams and Wilkins, 1984, pp. 207–212.

    Google Scholar 

  13. Jande, S. S. and L. F. Belanger. Electron microscopy of osteocytes and the pericellular matrix in rat trabecular bone. Calcif. Tissue Int. 6:280–289, 1971.

    Google Scholar 

  14. Ker, R. F., M. B. Bennett, R. M. Alexander, and R. C. Kester. Foot strike and the properties of the human heel pad. Proc. Inst. Mech. Eng., Part H 203:191–196, 1989.

    Google Scholar 

  15. Knothe Tate, M. L. and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:247–254, 2000.

    Google Scholar 

  16. Knothe Tate, M. L. and P. Niederer. A theoretical FE-based model developed to predict the relative contribution of convective and diffusive transport mechanisms for the maintenance of local equilibria within cortical bone. Advances in Heat and Mass Transfer in Biotechnology (ASME) HTD-Vol. 362/BED-Vol. 40:133–142, 1998.

    Google Scholar 

  17. Knothe Tate, M. L., P. Niederer, and U. Knothe. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:107–117, 1998.

    Google Scholar 

  18. Kufahl, R. H. and S. Saha. A theoretical model for stressgenerated fluid flow in the canaliculi-lacunae network in bone tissue. J. Biomech. 23:171–180, 1990.

    Google Scholar 

  19. Li, G., J. T. Bronk, K. An, and P. J. Kelly. Permeability of cortical bone of canine tibiae. Microvasc. Res. 34:302–310, 1987.

    Google Scholar 

  20. Marotti, G., M. A. Muglia, and D. Zaffe. A SEM study of osteocyte orientation in alternately structured osteons. Bone 6:331–334, 1985.

    Google Scholar 

  21. Marotti, G., M. Ferretti, F. Remaggi, and C. Palumbo. Quantitative evaluation on osteocyte canalicular density in human secondary osteons. Bone 16:125–128, 1995.

    Google Scholar 

  22. Marotti, G., D. Farneti, F. Remaggi, and F. Tartari. Morphometric investigation on osteocytes in human auditory ossicles. Anat. Anz. 180:449–453, 1998.

    Google Scholar 

  23. Maroudas, A., R. A. Stockwell, A. Nachemson, and J. Urban. Factors involved in the nutrition of human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J. Anat. 120:113–130, 1975.

    Google Scholar 

  24. McCarthy, I. D. and S. P. F. Hughes. Is there a blood-bone barrier? In: Bone Circulation and Bone Necrosis, edited by J. Arlet and B. Mazieres. New York: Springer, 1987, pp. 30–34.

    Google Scholar 

  25. McCarthy, I. D. and S. P. F. Hughes. Transport of small molecules across capillaries in bone. In: Blood Flow: Theory and Practice, edited by D. E. M. Taylor and A. L. Stevens. New York: Academic, 1983, pp. 313–329.

    Google Scholar 

  26. Montgomery, R. J., B. D. Sutker, J. T. Bronk, S. R. Smith, and P. J. Kelly. Interstitial fluid flow in cortical bone. Microvasc. Res. 35:295–307, 1988.

    Google Scholar 

  27. Neuman, W. F. and M. W. Newman. The Chemical Dynamics of Bone Mineral. Chicago: Chicago University Press, 1958.

    Google Scholar 

  28. Neuman, W. F. and W. K. Ramp. The concept of a bone membrane: some implications. In: Cellular Mechanisms for Calcium Transfer and Homeostasis, edited by G. Nichols, Jr. and R. H. Wasserman. New York: Academic, 1971, pp. 197–209.

    Google Scholar 

  29. Piekarski, K. and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature (London) 269:80–82, 1977.

    Google Scholar 

  30. Rouhana, S. W., M. W. Johnson, D. R. Chakkalakal, R. A. Harper, and J. L. Katz. Permeability of compact bone. Joint ASME-ASCE Conference Biomechanics Symposium AMD43:169–172, 1981.

    Google Scholar 

  31. Rubin, C. T., K. J. McLeod, and S. D. Bain. Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity. J. Biomech. 23:43–54, 1990.

    Google Scholar 

  32. Sauren, Y. M. H. F., R. H. P. Mieremet, and C. G. Groot. An electron microscopic study on the presence of proteoglycans in the mineralized matrix of rat and human compact lamellar bone. Anat. Rec. 232:36–44, 1992.

    Google Scholar 

  33. Skerry, T. M., R. Suswillo, A. J. el. Hai, N. N. Ali, R. A. Dodds, and L. E. Lanyon. Load-induced proteoglycan orientation in bone tissue in vivo and in vitro. Calcif. Tissue Int. 46:318–326, 1990.

    Google Scholar 

  34. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model of the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Google Scholar 

  35. Wilkes, C. H., and M. B. Visscher. Some physiological aspects of bone marrow pressure. J. Bone Jt. Surg. 57A:49–57, 1975.

    Google Scholar 

  36. Zeng, Y., S. C. Cowin, and S. Weinbaum. A fiber matrix for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng. 22:280–292, 1994.

    Google Scholar 

  37. Zhang, D., S. Weinbaum, and S. C. Cowin. Estimates of the peak pressure in the bone pore water. J. Biomech. Eng. 120:697–703, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Cowin, S.C., Weinbaum, S. et al. Modeling Tracer Transport in an Osteon under Cyclic Loading. Annals of Biomedical Engineering 28, 1200–1209 (2000). https://doi.org/10.1114/1.1317531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1317531

  • Bone
  • Bone fluid
  • Mixing
  • Lacunar-canalicular porosity
  • Metabolism
  • Mass transport
  • Poroelasticity