Skip to main content
Log in

Lead-field Bases for Electroencephalography Source Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, significant progress has been made in the area of electroencephalography (EEG) source imaging. Source localization on simple spherical models has become increasingly efficient, with consistently reported accuracy of within 5 mm. In contrast, source localization on realistic head models remains slow, with subcentimeter accuracy being the exception rather than the norm. A primary reason for this discrepancy is that most source imaging techniques are based on lead fields. While the lead field for simplified geometries can be easily computed analytically, an efficient method for computing realistic domain lead fields has, until now, remained elusive. In this paper, we propose two efficient methods for computing realistic EEG lead-field bases: the first is element oriented and the second is node oriented. We compare these two bases, discuss how they can be used to apply recent source imaging methods to realistic models, and report timings for constructing the bases. © 2000 Biomedical Engineering Society.

PAC00: 8719Nn, 8780Tq

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Burger, H. C., and J. B. van Milaan. Heart-vector and leads. Part I-Br. Heart J. 8: 157–161, 1946, Part II-Br. Heart J. 9: 154–160, 1947, Part III-Br. Heart J. 10: 229–233, 1948.

    Google Scholar 

  2. Gerson, J., V. A. Cardenas, and G. Fein. Equivalent dipole parameter estimation using simulated annealing. Electroencephalogr. Clin. Neurophysiol.92: 161–168, 1994.

    Google Scholar 

  3. Gorodnitsky, I. F., J. S. George, and B. D. Rao. Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol.95: 231–251, 1995.

    Google Scholar 

  4. Helmholtz, H. Uber einige gesetz der vertheilung elektrischer strome in korperlichen leitern, mit anwendung auf die thierischelektrischen versuche. Ann. Phys. Chem.29: 211–233, 1853; 29: 353–377, 1853.

    Google Scholar 

  5. Jin, J. The Finite Element Method in Electromagnetics. New York: Wiley, 1993.

    Google Scholar 

  6. Johnson, C. R. Numerical methods for bioelectric field problems. In The Biomedical Engineering Handbook, edited by J. D. Bronzino. Boca Raton: CRC Press, 1995, pp. 162–180.

    Google Scholar 

  7. Johnson, C. R. Computational and numerical methods for bioelectric field problems. Crit. Rev. Biomed. Eng.25(1): 1–81, 1997.

    Google Scholar 

  8. Khosla, D., M. Singh, and M. Don. Spatio-temporal EEG source localization using simulated annealing. IEEE Trans. Biomed. Eng.44(11): 1075–1091, 1997.

    Google Scholar 

  9. Krysl, P., and M. Oritz. Variational delaunay approach to the generation of tetrahedral finite element meshes. Int. J. Numer. Methods Eng.(in press).

  10. McFee, R., and F. D. Johnston. Electrocardiographic leads. I Circulation8: 554–568, 1953, II-Circulation 9: 255–266, 1954, III-Circulation 9: 868–880, 1954.

    Google Scholar 

  11. Metropolis, N., A. Rosenbluth, R. Rosenbluth, A. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys.21: 1087–1092, 1953.

    Google Scholar 

  12. Miller, C. E., and C. S. Henriquez. Finite element analysis of bioelectric phenomena. Crit. Rev. Biomed. Eng.8: 181–205, 1990.

    Google Scholar 

  13. Mosher, J. C., R. M. Leahy, and P. S. Lewis. EEG and MEG: Forward solutions for inverse methods. IEEE Trans. Biomed. Eng.46(3): 245–259, 1999.

    Google Scholar 

  14. Mosher, J. C., P. S. Lewis, and R. M. Leahy. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng.39(6): 541–557, 1992.

    Article  PubMed  Google Scholar 

  15. Nedler, J. A., and R. Mead. A simplex method for function minimization. Comput. J. (UK) 7: 308–313, 1965.

    Google Scholar 

  16. Parker, S. G., D. M. Weinstein, and C. R. Johnson. The SCIRun computational steering software system. In Modern Software Tools in Scientific Computing. edited by E. Arge, A. M. Bruaset, and H. P. Langtangen. Boston: Birkhauser, 1997, pp. 1–40.

    Google Scholar 

  17. Pasqual-Marqui, R. D., C. M. Michel, and D. Lehmann. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol.18: 49–65, 1994.

    Google Scholar 

  18. Plonsey, R. Reciprocity applied to volume conductors and the ECG. IEEE Trans. Biomed. Electron.10: 9–12, 1963.

    Google Scholar 

  19. Rush, S., and D. A. Driscoll. Eeg electrode sensitivity—an application of reciprocity. IEEE Trans. Biomed. Eng.16: 15–22, 1969.

    Google Scholar 

  20. Wells, W. M., W. E. L. Grimson, R. Kikinis, and F. A. Jolesz. Statistical intensity correction and segmentation of MRI data. In Visualization in Biomedical Computing. Bellingham: SPIE, 1994, pp. 13–24.

    Google Scholar 

  21. Yan, Y., P. L. Nunez, and R. T. Hart. Finite-element model of the human head: Scalp potentials due to dipole sources. Med. Biol. Eng. Comput.29: 475–481, 1991.

    Google Scholar 

  22. Zhukov, L., D. Weinstein, and C. Johnson. Independent component analysis for EEG source localization. IEEE Eng. Med. Biol. Mag.19: 87–96, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, D., Zhukov, L. & Johnson, C. Lead-field Bases for Electroencephalography Source Imaging. Annals of Biomedical Engineering 28, 1059–1065 (2000). https://doi.org/10.1114/1.1310220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1310220

Navigation