Skip to main content

Advertisement

Log in

Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An anatomically accurate model of the conducting airways is essential for adequately simulating gas mixing, particle deposition, heat and water transfer, and fluid distribution. We have extended a two-dimensional tree-growing algorithm to three dimensions for generation of a host-shape dependent three-dimensional conducting airway model. Terminal branches in the model are both length limited and volume-supplied limited. A limit is imposed on the maximum possible branch angle between a daughter and parent branch. Comparison of the resulting model with morphometric data shows that the algorithm produces branching and length ratios, path lengths, numbers of branches, and branching angles very close to those from the experimental data. The correlation between statistics from the generated model and those from morphometric studies suggests that the conducting airway structure can be described adequately using a “supply and demand” algorithm. The resulting model is a computational mesh that can be used for simulating transport phenomena. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng. 25:96–111, 1997.

    Google Scholar 

  2. Chang, H. K., and L. E. Farhi. On mathematical analysis of gas transport in the lung.Respir. Physiol. 18:370–385, 1973.

    Google Scholar 

  3. Darquenne, C., and M. Paiva. One-dimensional simulation of aerosol transport and deposition in the human lung. J. Appl. Physiol. 77(6):2889–2898, 1994.

    Google Scholar 

  4. de Vries, W. R., S. C. M. Luijendijk, and A. Zwart. Helium and sulfur hexaflouride washout in asymmetric lung models. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 51:1122–1130, 1981.

    Google Scholar 

  5. Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: A morphometric model. Ann. Biomed. Eng. 27:14–22, 1999.

    Google Scholar 

  6. Haefeli-Bleuer, B., and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat. Rec. 220:401–414, 1988.

    Google Scholar 

  7. Horsfield, K. Organization of the tracheobronchial tree. In: Scientific Foundations of Respiratory Medicine, edited by J. G. Scadding and G. Cumming. London: William Heinemann, 1981.

    Google Scholar 

  8. Horsfield, K., and G. Cumming. Angles of branching and diameters of branches in the human bronchial tree. Bull. Math. Biophys. 29:245–259, 1967.

    Google Scholar 

  9. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24:373–383, 1968.

    Google Scholar 

  10. Horsfield, K., G. Dart, D. E. Olsen, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207–217, 1971.

    Google Scholar 

  11. Horsfield, K., F. G. Relea, and G. Cumming. Diameter, length and branching ratios in the bronchial tree. Respir. Physiol. 26:351–356, 1976.

    Google Scholar 

  12. Kitaoka, H., R. Takaki, and B. Suki. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87(6):2207–2217, 1999.

    Google Scholar 

  13. Pack, A., M. B. Hooper, W. Nixon, and J. C. Taylor. A computational model of pulmonary gas transport incorporating effective diffusion. Respir. Physiol. 29:101–124, 1977.

    Google Scholar 

  14. Paiva, M., and L. A. Engel. Pulmonary interdependence of gas transport. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 47:296–305, 1979.

    Google Scholar 

  15. Perzl, M. A., H. Schulz, H. G. Paretzke, K. H. Englmeier, and J. Heyder. Reconstruction of the lung geometry for the simulation of aerosol transport. J. Aerosol Medicine 9(3):409–418, 1996.

    Google Scholar 

  16. Phalen, R. F., H. C. Yeh, G. M. Schum, and O. G. Raabe. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat. Rec. 190:167–176, 1978.

    Google Scholar 

  17. Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. T. Crocker, and J. D. Mortensen. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec. 212:368–380, 1985.

    Google Scholar 

  18. Raabe, O. G., H. C. Yeh, G. M. Schum, and R. F. Phalen. Tracheobronchial geometry-Human, Dog, Rat, Hamster. Lovelace Foundation for Medical Education and Research, 1976.

  19. Scherer, P. W., L. H. Shendalman, and N. M. Green. Simultaneous diffusion and convection in a single breath lung washout. Bull. Math. Biophys. 34:393–412, 1972.

    Google Scholar 

  20. Snyder, B., D. R. Dantzker, and M. J. Jaeger. Flow partitioning in symmetric cascades of branches. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 51(3):598–606, 1981.

    Google Scholar 

  21. Taulbee, D. B., and C. P. Yu. A theory of aerosol deposition in the human respiratory tract. J. Appl. Physiol. 38(1):77–85, 1975.

    Google Scholar 

  22. Thurlbeck, A., and K. Horsfield. Branching angles in the bronchial tree related to order of branching. Respir. Physiol. 41:173–181, 1980.

    Google Scholar 

  23. U.S. National Library of Medicine. Visual Man Project. CDROM, 1996

  24. Verbanck, S., and M. Paiva. Model simulations of gas mixing and ventilation distribution in the human lung.J. Appl. Physiol. 69(6):2269–2279, 1990.

    Google Scholar 

  25. Wang, C. Y., J. B. Bassingthwaighte, and L. J. Weissman. Bifurcating distributive system using Monte Carlo method. Math. Comput. Modeling. 16(3):91–98, 1992.

    Google Scholar 

  26. Weibel, E. R., Morphometry of the Human Lung. Berlin: Springer, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawhai, M.H., Pullan, A.J. & Hunter, P.J. Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways. Annals of Biomedical Engineering 28, 793–802 (2000). https://doi.org/10.1114/1.1289457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1289457

Navigation