Annals of Biomedical Engineering

, Volume 32, Issue 11, pp 1494–1503

Mechanical Analysis of Atherosclerotic Plaques Based on Optical Coherence Tomography

  • Alexandra H. Chau
  • Raymond C. Chan
  • Milen Shishkov
  • Briain MacNeill
  • Nicusor Iftimia
  • Guillermo J. Tearney
  • Roger D. Kamm
  • Brett E. Bouma
  • Mohammad R. Kaazempur-Mofrad


Finite element analysis is a powerful tool for investigating the biomechanics of atherosclerosis and has thereby provided an improved understanding of acute myocardial infarction. Structural analysis of arterial walls is traditionally performed using geometry contours derived from histology. In this paper we demonstrate the first use of a new imaging technique, optical coherence tomography (OCT), as a basis for finite element analysis. There are two primary benefits of OCT relative to histology: 1) imaging is performed without excessive tissue handling, providing a more realistic geometry than histology and avoiding structural artifacts common to histologic processing, and 2) OCT imaging can be performed in vivo, making it possible to study disease progression and the effect of therapeutic treatments in animal models and living patients. Patterns of mechanical stress and strain distributions computed from finite element analysis based on OCT were compared with those from modeling based on “gold standard” histology. Our results indicate that vascular structure and composition determined by OCT provides an adequate basis for investigating the biomechanical factors relevant to atherosclerosis and acute myocardial infarction.

Optical coherence tomography (OCT) FEM Atherosclerotic plaques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Heart Association. Heart and Stroke Facts: 1996. Statistical Supplement, Dallas, Texas.Google Scholar
  2. 2.
    American Heart Association. Heart Disease and Stroke Statistics: 2003. Update, Dallas, Texas.Google Scholar
  3. 3.
    Bathe, K.-J. Finite Element Procedures. Upper Saddle River, NJ: Prentice-Hall, 1996, pp. 592–594.Google Scholar
  4. 4.
    Becker, C. R., A. Knez, A. Leber, H. Treede, B. Ohnesorge, U. J. Schoepf, and M. F. Reiser. Detection of coronary artery stenoses with multislice helical CT angiography. J. Comput. Assist. Tomogr. 26:750–755, 2002.Google Scholar
  5. 5.
    Botnar, R. M., M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning. Noninvasive coronary ves-sel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587, 2002.Google Scholar
  6. 6.
    Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in rup-tured and stable atherosclerotic lesions—a structural-analysis with histopathological correlation. Circulation 87:1179–1187, 1993.Google Scholar
  7. 7.
    Davies, M. J. Stability and instability: Two faces of coronary atherosclerosis—the Paul Dudley White lecture 1995. Circulation 94:2013–2020, 1996.Google Scholar
  8. 8.
    Delfino, A. Analysis of stress field in a model of the human carotid. In: Physics. Lausanne: Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland, 1996.Google Scholar
  9. 9.
    Delfino, A., N. Stergiopulos, J. E. Moore, and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.Google Scholar
  10. 10.
    Doyley, M. M., P. M. Meaney, and J. C. Bamber. Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 45:1521–1540, 2000.Google Scholar
  11. 11.
    Falk, E. Why do plaques rupture. Circulation 86:30–42, 1992.Google Scholar
  12. 12.
    Glagov, S., H. S. Bassiouny, Y. Sakaguchi, C. A. Goudet, and R. P. Vito. Mechanical determinants of plaque modeling, remodeling and disruption. Atherosclerosis 131 Suppl:S13–14, 1997.Google Scholar
  13. 13.
    Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. Optical coherence tomography. Science 254:1178–1181, 1991.Google Scholar
  14. 14.
    Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056, 2001.Google Scholar
  15. 15.
    Humphrey, J. D., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30:509–523, 2002.Google Scholar
  16. 16.
    Jang, I. K., B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39:604–609, 2002.Google Scholar
  17. 17.
    Kaazempur-Mofrad, M. R., H. F. Younis, S. Patel, A. Isasi, C. Chung, R. C. Chan, D. P. Hinton, R. T. Lee, and R. D. Kamm. Cyclic strain in human carotid bifurcation and its potential cor-relation to atherogenesis: Idealized and anatomically-realistic models. J. Eng. Math. 47:299–314, 2003.Google Scholar
  18. 18.
    Keeney, S., and P. Richardson. Stress analysis of atherosclerotic arteries. IEEE Eng. Med. Biol. 9:1484–1485, 1987.Google Scholar
  19. 19.
    Khalil, A., R. D. Kamm, B. E. Bouma, and M. R. Kaazempur-Mofrad. A genetic/FEM algorithm for parameter estimation: Application in characterization of atherosclerotic plaques. J. Comput. Phys., Submitted.Google Scholar
  20. 20.
    Kolodgie, F. D., A. P. Burke, A. Farb, H. K. Gold, J. Y. Yuan, J. Narula, A. V. Finn, and R. Virmani. The thin-cap fibro-atheroma: A type of vulnerable plaque—the major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16:285–292, 2001.Google Scholar
  21. 21.
    Lee, R. T., A. J. Grodzinsky, E. H. Frank, R. D. Kamm, and F. J. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.Google Scholar
  22. 22.
    Lee, R. T., H. M. Loree, G. C. Cheng, E. H. Lieberman, N. Jaramillo, and F. J. Schoen. Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: Prediction of plaque fracture locations. J. Am. Coll. Cardiol. 21:777–782, 1993.Google Scholar
  23. 23.
    Lee, R. T., H. M. Loree, and M. C. Fishbein. High stress regions in saphenous vein bypass graft atherosclerotic lesions. J. Am. Coll. Cardiol. 24:1639–1644, 1994.Google Scholar
  24. 24.
    Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.Google Scholar
  25. 25.
    Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71:850–858Google Scholar
  26. 26.
    Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical-properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. 14:230–234, 1994.Google Scholar
  27. 27.
    Ophir, J., I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13:111–134, 1991.Google Scholar
  28. 28.
    Patel, S. Y., M. R. Kaazempur-Mofrad, A. G. Isasi, and R. D. Kamm. Diseased artery wall mechanics: Correlation to histology. In: Proceedings of the 2003 Summer Bioengineering Conference, Key Biscayne, FL, June 25–29, 2003, pp. 499–500.Google Scholar
  29. 29.
    Richardson, P. D., M. J. Davies, and G. V. R. Born. Influence of plaque configuration and stress-distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944, 1989.PubMedGoogle Scholar
  30. 30.
    Rivlin, R. S. “Large elastic deformations of isotropic materials IV. Further developments of the general theory.” Phil. Trans. R. Soc. Lond. A 241:379–397, 1948.Google Scholar
  31. 31.
    Schmitt, J. M. Oct elastography: Imaging microscopic deformation and strain of tissue. Opt. Express 3:199–211, 1998.Google Scholar
  32. 32.
    Tearney, G. J., M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037–2039, 1997.Google Scholar
  33. 33.
    Tearney, G. J., I. K. Jang, and B. E. Bouma. Evidence of cholesterol crystals in atherosclerotic plaque by optical coherence tomography. Eur. Heart J. 24:1462, 2003.Google Scholar
  34. 34.
    Tearney, G. J., H. Yabushita, S. L. Houser, H.T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119, 2003.Google Scholar
  35. 35.
    Williamson, S. D., Y. Lam, H. F. Younis, H. Huang, S. Patel, M. R. Kaazempur-Mofrad, and R. D. Kamm. On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomech. Eng. Trans. ASME 125:147–155, 2003.Google Scholar
  36. 36.
    Yabushita, H., B. E. Bouma, S. L. Houser, T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, and G. J. Tearney. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645, 2002.Google Scholar
  37. 37.
    Zaman, A. G., G. Helft, S. G. Worthley, and J. J. Badimon. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149:251–266, 2000.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Alexandra H. Chau
    • 1
    • 2
  • Raymond C. Chan
    • 2
  • Milen Shishkov
    • 2
  • Briain MacNeill
    • 2
  • Nicusor Iftimia
    • 2
  • Guillermo J. Tearney
    • 2
  • Roger D. Kamm
    • 1
  • Brett E. Bouma
    • 2
  • Mohammad R. Kaazempur-Mofrad
    • 1
  1. 1.Department of Mechanical Engineering and Biological Engineering DivisionMassachusetts Institute of TechnologyCambridge
  2. 2.Wellman Center for Photomedicine, Massachusetts General HospitalHarvard Medical SchoolBoston

Personalised recommendations