Advertisement

Annals of Biomedical Engineering

, Volume 32, Issue 11, pp 1471–1483 | Cite as

Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics

  • Rui Cheng
  • Yong G. Lai
  • Krishnan B. Chandran
Article

Abstract

The wall shear stress induced by the leaflet motion during the valve-closing phase has been implicated with thrombus initiation with prosthetic valves. Detailed flow dynamic analysis in the vicinity of the leaflets and the housing during the valve-closure phase is of interest in understanding this relationship. A three-dimensional unsteady flow analysis past bileaflet valve prosthesis in the mitral position is presented incorporating a fluid-structure interaction algorithm for leaflet motion during the valve-closing phase. Arbitrary Lagrangian–Eulerian method is employed for incorporating the leaflet motion. The forces exerted by the fluid on the leaflets are computed and applied to the leaflet equation of motion to predict the leaflet position. Relatively large velocities are computed in the valve clearance region between the valve housing and the leaflet edge with the resulting relatively large wall shear stresses at the leaflet edge during the impact-rebound duration. Negative pressure transients are computed on the surface of the leaflets on the atrial side of the valve, with larger magnitudes at the leaflet edge during the closing and rebound as well. Vortical flow development is observed on the inflow (atrial) side during the valve impact-rebound phase in a location central to the leaflet and away from the clearance region where cavitation bubbles have been visualized in previously reported experimental studies.

Negative pressure transients Cavitation initiation Fluid-structure interaction Computational flow simulation Impact-rebound dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Aluri, S., and K. B. Chandran. Numerical simulation of mechan-ical mitral heart valve closure. Ann. Biomed. Eng. 29:665–676, 2001.Google Scholar
  2. 2.
    Baaijens, F. P. T. A. fictitious domain/mortar element method for fluid-structure interaction. Int. J. Num. Methods Fluids 35:743–761, 2001.Google Scholar
  3. 3.
    Bluestein, D., S. Einav, and N. H. Hwang. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. J. Biomech. 27:1369–1378, 1994.Google Scholar
  4. 4.
    Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dowanjee. Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997.Google Scholar
  5. 5.
    Chandran, K. B., and S. Aluri. Mechanical valve closing dy-namics: Relationship between velocity of closing, pressure tran-sients, and cavitation initiation. Ann. Biomed. Eng. 25:926–938, 1997.Google Scholar
  6. 6.
    Chandran, K. B., E. U. Dexter, S. Aluri, and W. E. Riehenbacher. Negative pressure transients with mechanical heart-valve closure: Correlation between in vitro and in vivo results. Ann. Biomed. Eng. 26:546–556, 1998.Google Scholar
  7. 7.
    Chandran, K. B., C. S. Lee, S. Aluri, K. C., Dellsperger, S. Schrack, and D. W. Wietins. Pressure distribution near the occluders and impact forces on the outlet struts of Bjork-Shiley convexo-concave valves during closing. J. Heart Valve Dis. 5:199–206, 1996.Google Scholar
  8. 8.
    Chandran, K. B., C. S. Lee, and L. D. Chen. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: Correlation with cavitation initiation. J. Heart Valve Dis. 3(Suppl. 1):S65–S75; discussion S75-S66, 1994.Google Scholar
  9. 9.
    Cheng, R., Y.-G. Lai, and K. B. Chandran. Two-dimensional fluid-structure interaction simulation of bi-leaflet mechanical heart valve flow dynamics. Heart Valve Dis. 12:772–780, 2003.Google Scholar
  10. 10.
    Cheon, G. J., and K. B. Chandran. Dynamic behavior analysis of mechanical monoleaflet heart valve prostheses in the opening phase. J. Biomech. Eng. 115:389–395, 1993.Google Scholar
  11. 11.
    De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.Google Scholar
  12. 12.
    De Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A two-dimensional fluid-structure interaction model of the aortic valve [correction of value]. J. Biomech. 33:1079–1088, 2000.Google Scholar
  13. 13.
    De Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.Google Scholar
  14. 14.
    Dexter, E. U., S. Aluri, R. R. Radcliffe, H. Zhu, D. D. Carlson, T. E. Heilman, K. B. Chandran, W. E. Richenbacher. In vivo demonstration of cavitation potential of a mechanical heart valve. ASAIO J. 45:436–441, 1999.Google Scholar
  15. 15.
    Garrison, L. A., T. C. Lamson, S. Deutsch, D. B Geselowitz, R. P. Gaumond, and J. N. Tarbell. An in-vitro investigation of prosthetic heart valve cavitation in blood. J. Heart Valve Dis. 3(Suppl. 1):S8–S22; discussion S22-S24, 1994.Google Scholar
  16. 16.
    Graf, T., H. Fischer, H. Reul, and G. Rau. Cavitation potential of mechanical heart valve prostheses. Int. J. Artif. Organs 14:169–174, 1991.Google Scholar
  17. 17.
    Graf, T., H. Reul, C. Detlefs, and G. Rau. Causes and formation of cavitation in mechanical heart valves. J. Heart Valve Dis. 3(Suppl. 1):S49–S64, 1994.Google Scholar
  18. 18.
    Kini, V., C. Bachmann, A. Fontaine, S. Deutsch, and J. M. Tarbell. Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann. Biomed. Eng. 28:431–441, 2000.Google Scholar
  19. 19.
    Lai, Y. G. Unstructured grid arbitrarily shaped element method for fluid flow simulation. AIAA J. 38:2246–2252, 2000.Google Scholar
  20. 20.
    Lai, Y. G., K. B. Chandran, J. Lemmon. A numerical simulation of mechanical heart valve closure fluid dynamics. J. Biomech. 35:881–892, 2002.Google Scholar
  21. 21.
    Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Stinebring, J. A. Franson, J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39:M626–M633, 1993.Google Scholar
  22. 22.
    Lee, C. S., K. B. Chandran, L. D. Chen. Cavitation dynamics of mechanical heart valve prostheses. Artif. Organs 18:758–767, 1994.Google Scholar
  23. 23.
    Lee, C. S., K. B. Chandran, L. D. Chen. Cavitation dynamics of Medtronic hall mechanical heart valve prosthesis: Fluid squeezing effect. J. Biomech. Eng. 118:97–105, 1996.Google Scholar
  24. 24.
    Makhijani, V. B., H. Q. Yang, A. K. Singhal, and N. H. C. Hwang. An experimental computational analysis of MHV cavitation: Effects of leaflet squeezing and rebound. J. Heart Valve Dis. 3(Suppl. 1):S35–S44; discussion S44-S38, 1994.Google Scholar
  25. 25.
    Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27:840–846, 2003.Google Scholar
  26. 26.
    Ramstack, J. M., L. Zuckerman, L. F. Mockros. Shear induced activation of platelets. J. Biomech. 12:113–125, 1979.Google Scholar
  27. 27.
    Shu, M. C., L. H. Leuer, T. L. Armitage, J. E Schneider, and D. R. Christiansen. In vitro observations of mechanical heart valve cavitation. J. Heart Valve Dis. 3(Suppl. 1):S85–S92; dis-cussion S92-S83, 1994.Google Scholar
  28. 28.
    Zapanta, C. M., D. R. Stinebring, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics. J. Heart Valve Dis. 7:655–667, 1998.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Rui Cheng
    • 1
    • 2
  • Yong G. Lai
    • 1
  • Krishnan B. Chandran
    • 1
    • 2
    • 3
  1. 1.IIHR-Hydroscience and Engineering, College of EngineeringUniversity of IowaIowa City
  2. 2.Department of Mechanical Engineering, College of EngineeringUniversity of IowaIowa City
  3. 3.Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa City

Personalised recommendations