Annals of Biomedical Engineering

, Volume 32, Issue 10, pp 1443–1452 | Cite as

Anisotropic, Three-Dimensional Deformation of Single Attached Cells Under Compression

  • Emiel A. G. Peeters
  • Carlijn V. C. Bouten
  • Cees W. J. Oomens
  • Dan L. Bader
  • Luc H. E. H. Snoeckx
  • Frank P. T. Baaijens


Quantifying three-dimensional deformation of cells under mechanical load is relevant when studying cell deformation in relation to cellular functioning. Because most cells are anchorage dependent for normal functioning, it is desired to study cells in their attached configuration. This study reports new three-dimensional morphometric measurements of cell deformation during stepwise compression experiments with a recently developed cell loading device. The device allows global, unconfined compression of individual, attached cells under optimal environmental conditions. Three-dimensional images of fluorescently stained myoblasts were recorded with confocal microscopy and analyzed with image restoration and three-dimensional image reconstruction software to quantify cell deformation. In response to compression, cell width, cross-sectional area, and surface area increased significantly with applied strain, whereas cell volume remained constant. Interestingly, the cell and the nucleus deformed perpendicular to the direction of actin filaments present along the long axis of the cell. This strongly suggests that this anisotropic deformation can be attributed to the preferred orientation of actin filaments. A shape factor was introduced to quantify the global shape of attached cells. The increase of this factor during compression reflected the anisotropic deformation of the cell.

Cell mechanics Image analysis Cell deformation Muscle cell Confocal microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcaraz, J., L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Narajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84:2071-2079, 2003.Google Scholar
  2. 2.
    Arnoczky, S. P., M. Lavagnino, J. H. Whallon, and A. Hoonjan. In situ cell nucleus deformation in tendons under tensile load: A morphological analysis using confocal laser microscopy. J. Orthop. Res. 20:29-35, 2002.Google Scholar
  3. 3.
    Banes, A. J., M. Tsuzaki, P. Hu, B. Brigman, T. Brown, and L. Miller. Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73:349-365, 1995.Google Scholar
  4. 4.
    Ben-Ze'ev, A. Animal cell shape changes and gene expression. Bioessays 13:207-212, 1991.Google Scholar
  5. 5.
    Bhadriraju, K., and L. K. Hansen. Extracellular matrix-and cytoskeleton-dependent changes in cell shape and stiffness. Exp. Cell Res. 278:92-100, 2002.Google Scholar
  6. 6.
    Bouten, C. V. C., M. M. Knight, D. A. Lee, and D. L. Bader. Compressive deformation and damage of muscle cell subpopulations in a model system. Ann. Biomed. Eng. 29:153-163, 2001.Google Scholar
  7. 7.
    Brodland, G. W., and J. H. Veldhuis. Computer simulations of mitosis and interdependencies between mitosis orientation, cell shape and epithelia reshaping. J. Biomech. 35:673-681, 2002.Google Scholar
  8. 8.
    Bucher, D., M. Scholz, M. Stetter, K. Obermayer, and H. J. Pflüger. Correction methods for three-dimensional reconstructions from confocal images: I. Tissue shrinking and axial scaling. J. Neurosci. 100:135-143, 2000.Google Scholar
  9. 9.
    Caille, N., O. Thoumine, Y. Tardy, and J.-J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177-187, 2002.Google Scholar
  10. 10.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425-1428, 1997.Google Scholar
  11. 11.
    Coughlin, M. F., and D. Stamenović. A tensegrity model of the cytoskeleton in spread and round cells. J. Biomech. Eng. 120:770-777, 1998.Google Scholar
  12. 12.
    Daily, B., and E. L. Elson. Cell poking: Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J. 45:671-682, 1984.Google Scholar
  13. 13.
    Errington, R. J., M. D. Fricker, J. L. Wood, A. C. Hall, and N. S. White. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: A pragmatic approach. Am. J. Physiol. 272:104-1051, 1997.Google Scholar
  14. 14.
    Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulolcytes determined by micropipet aspiration. Biophys. J. 56:151-160, 1989.Google Scholar
  15. 15.
    Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529-1541, 1995.Google Scholar
  16. 16.
    Guilak, F., A. Ratcliffe, and C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study. J. Orthop. Res. 13:410-421, 1995.Google Scholar
  17. 17.
    Hell, S., G. Reiner, C. Cremer, and E. H. K. Stelzer. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169:391-405, 1993.Google Scholar
  18. 18.
    Ingber, D. E. Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613-627, 1993.Google Scholar
  19. 19.
    Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763-781, 1998.Google Scholar
  20. 20.
    Kano, H., H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell. Avalanche photodiode detection with object scanning and image restoration provides 2–4 fold resolution increase in two-photon fluorescence microscopy. Bioimaging 4:187-197, 1996.Google Scholar
  21. 21.
    Kempen, G. M. P., L. J. van Vliet, P. J. Verveer, and H. T. M. van der Voort. A quantitative comparison of image restoration methods for confocal microscopy. J. Microsc. 185:354-365, 1997.Google Scholar
  22. 22.
    Knight, M. M., D. A. Lee, and D. L. Bader. Distribution of chondrocyte deformation in compressed agarose gel using confocal microscopy. Med. Biol. Eng. Comput. 1:97-102, 1996.Google Scholar
  23. 23.
    Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334-341, 2003.Google Scholar
  24. 24.
    Lee, D. A., M. M. Knight, J. F. Bolton, B. D. Idowu, M. V. Kayser, and D. L. Bader. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33:81-95, 2000.Google Scholar
  25. 25.
    Maniotis, A. J., C. S. Chien, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849-854, 1997.Google Scholar
  26. 26.
    McConnaughey, W. B., and N. O. Petersen. The cell poker: An apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51:575-580, 1980.Google Scholar
  27. 27.
    Mooney, D., L. Hansen, J. Vacanti, R. Langer, S. Farmer, and D. Ingber. Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. J. Cell. Physiol. 151:497-505, 1992.Google Scholar
  28. 28.
    Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 µm pipet and measurement of cytoplasmic viscosity. J. Biomech. Eng. 112:269-276, 1990.Google Scholar
  29. 29.
    Peeters, E. A. G., C. V. C. Bouten, C. W. J. Oomens, and F. P. T. Baaijens. Monitoring the biomechanical response of individual cells under compression: A new compression device. Med. Biol. Eng. Comput. 41:498-503, 2003.Google Scholar
  30. 30.
    Petersen, N. O., W. B. McConnaughey, and E. L. Elson. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalalasin B. Proc. Natl. Acad. Sci. U.S.A. 79:5327-5331, 1982.Google Scholar
  31. 31.
    Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263-268, 1990.Google Scholar
  32. 32.
    Sheppard, J. Axial resolution of confocal fluorescence microscopy. J. Microsc. 154:237-241, 1989.Google Scholar
  33. 33.
    Stuurman, N., S. Heins, and U. Aebi. Nuclear lamins: Their structure, assembly and interactions. J. Struct. Biol. 122:42-66, 1998.Google Scholar
  34. 34.
    Thoumine, O., and O. Cardoso. Changes in the mechanical properties of fibroblasts during spreading: A micromanimpulation study. Eur. Biophys. J. 28:222-234, 1999.Google Scholar
  35. 35.
    Thoumine, O., A. Ott, O. Cardoso, and J. Meister. Microplates: A new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods 39:47-62, 1999.Google Scholar
  36. 36.
    Vesenka, J., C. Mosher, S. Schaus, L. Ambrosio, and E. Henderson. Combining optical and atomic force microscopy for life sciences research. Biotechniques 19:240-253, 1995.Google Scholar
  37. 37.
    Visser, T. D., J. L. Oud, and G. J. Brakenhoff. Refractive index and axial distance measurements in 3D microscopy. Optik 90:17-19, 1992.Google Scholar
  38. 38.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124-1127, 1993.Google Scholar
  39. 39.
    Wang, N., and D. E. Ingber. Control of cytoskeletal mechanics by extracellular matrix, cell shape and mechanical tension. Biophys. J. 66:2181-2189, 1994.Google Scholar
  40. 40.
    Watson, P. A. Function follows form: Generation of intracellular signals by cell deformation. FAS EB J. 5:2013-2019, 1991.Google Scholar
  41. 41.
    Wilson, T. Optical sectioning in confocal fluorescent microscopes. J. Microsc. 154:143-156, 1989.Google Scholar
  42. 42.
    You, H. X., J. M. Lau, S. Zhang, and L. Yu. Atomic force microscopy imaging of living cells: A preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82:297-305, 2000.Google Scholar
  43. 43.
    Zhang, Z., M. A. Ferenczi, A. C. Lush, and C. R. Thomas. A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl. Microbiol. Biotechnol. 36:208-210, 1991.Google Scholar
  44. 44.
    Zvyagin, A. V., K. K. M. B. D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson. Refractive index tomography of turbid media by bifocal optical coherence refractometry. Opt. Express 11:3503-3517, 2003.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Emiel A. G. Peeters
    • 1
  • Carlijn V. C. Bouten
    • 1
  • Cees W. J. Oomens
    • 1
  • Dan L. Bader
    • 1
    • 2
  • Luc H. E. H. Snoeckx
    • 1
    • 3
  • Frank P. T. Baaijens
    • 1
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands;
  2. 2.IRC in Biomedical Materials and Medical Engineering Division, Queen MaryUniversity ofLondonUnited Kingdom
  3. 3.Department of PhysiologyMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations