Annals of Biomedical Engineering

, Volume 32, Issue 10, pp 1409–1419 | Cite as

Changes in the Biaxial Viscoelastic Response of the Urinary Bladder Following Spinal Cord Injury

  • Jiro Nagatomi
  • D. Claire Gloeckner
  • Michael B. Chancellor
  • William C. deGroat
  • Michael S. Sacks


In order to gain a deeper understanding of bladder function, it is necessary to study the time-dependent response of the bladder wall. The present study evaluated and compared the viscoelastic behaviors of normal and spinal cord injured (SCI) rat bladder wall tissue using an established rat model and planar biaxial stress relaxation tests. Bladders from normal and spinalized (3 weeks) rats were subjected to biaxial stress (either 25 or 100 kPa in each loading direction) rapidly (in 50 ms) and subsequently allowed to relax at the constant stretch levels in modified Kreb's solution (in the absence of calcium; with no smooth muscle tone) for 10,000 s. We observed slower and therefore less stress relaxation in the SCI group compared to the normal group, which varied with the stress-level. These experimental results were fitted (r2 > 0.98) to a reduced relaxation function. Furthermore, biochemical assays revealed that the collagen content of SCI rat bladders was significantly (p < 0.05) lower by 43%, while the elastin content was significantly (p < 0.001) higher by 260% than that of normal bladders. These results suggest that SCI and the associated urologic functional changes induce profound tissue remodeling, which, in turn, provided the structural basis for the alterations in the complex, time-dependent mechanical behavior of the urinary bladder wall observed in the present study.

Viscoelasticity Bladder wall Tissue Composition Biomechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, R. S. Mechanical properties of urinary bladder. Am. J. Physiol. 220:1413-1421, 1971.Google Scholar
  2. 2.
    Alexander, R. S. Viscoplasticity of smooth muscle of urinary bladder. Am.J.Physiol. 224:618-622, 1973.Google Scholar
  3. 3.
    Andersson, S., P. Bjerle, and A. Kronstrom. Bladder wall relaxation and its dependency on transmural pressure and infusion rate during cystometry—In vivo studies in the rat. Urol Int. 43:157-159, 1988.Google Scholar
  4. 4.
    Andersson, S., A. Kronström, and P. Bjerle. Viscoelastic properties of the normal human bladder. Scand. J. Urol. Nephrol. 23:115-120, 1989.Google Scholar
  5. 5.
    Coolsaet, B. L. R. A., W. A. van Duyl, R. van Mastrigt, and J. W. Schouten. Viscoelastic properties of bladder wall strips. Invest. Urol.y 12:351-355, 1975.Google Scholar
  6. 6.
    Coolsaet, B. L. R. A., W. A. van Duyl, R. van Mastrigt, and A. van der Zwart. Visco-elastic properties of the bladder wall. Urol. Int. 30:16-26, 1975.Google Scholar
  7. 7.
    Coolsaet, B. L. R. A., R. van Mastrigt, W. A. van Duyl, and R. E. F. Huygen. Viscoelastic properties of bladder wall strips at constant elongation. Invest. Urol. 13:435-440, 1976.Google Scholar
  8. 8.
    Damaser, M. S., A. Arner, and B. Uvelius. Partial outlet obstruction induces chronic distension and increased stiffness of rat urinary bladder. Neurourol Urodyn. 15:650-665, 1996.Google Scholar
  9. 9.
    Dean, G. E., R. S. Cargill III, E. Macarak, H. M. Snyder, J. W. Duckett, and R. Levin. Active and passive compliance of the fetal bovine bladder. J. Urol. 158:1094-1099, 1997.Google Scholar
  10. 10.
    de Groat, W. C. A neurologic basis for the overactive bladder. Urology 50:36-52, 1997.Google Scholar
  11. 11.
    Deveaud, C. M., E. J. Macarak, U. Kucich, D. H. Ewalt, W. R. Abrams, and P. S. Howard. Molecular analysis of collagens in bladder fibrosis. J. Urol. 160:1518-1527, 1998.Google Scholar
  12. 12.
    Drake, M. J., P. Hedlund, I. W. Mills, R. McCoy, G. McMurray, B. P. Gardner, K. E. Andersson, and A. F. Brading. Structural and functional denervation of human detrusor after spinal cord injury. Lab. Invest. 80:1491-1499, 2000.Google Scholar
  13. 13.
    Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues, New York: Springer-Verlag, pp. 568, 1993.Google Scholar
  14. 14.
    Funk, J. R., G. W. Hall, J. R. Crandall, and W. D. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122:15-22, 2000.Google Scholar
  15. 15.
    Gloeckner, D. C., M. S. Sacks, M. O. Fraser, G. T. Somogyi, W. C. de Groat, and M. B. Chancellor. Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J. Urol. 167:2247-2252, 2002.Google Scholar
  16. 16.
    Hackler, R. H., M. K. Hall, and T. A. Zampieri. Bladder hypocompliance in the spinal cord injury population. J. Urol. 141:1390-1393, 1989.Google Scholar
  17. 17.
    Kim, K. M., B. A. Kogan, C. A. Massad, and Y. C. Huang. Collagen and elastin in the obstructed fetal bladder. J. Urol. 146:528-531, 1991.Google Scholar
  18. 18.
    Kondo, A., J. G. Susset, and J. Lefaivre. Viscoelastic properties of bladder i. Mechanical model and its mathematical analysis. Invest. Urol. 10:154-163, 1972.Google Scholar
  19. 19.
    Kruse, M. N., L. A. Bray, and W. C. de Groat. Influence of spinal cord injury on the morphology of bladder afferent and efferent neurons. J. Auton. Nerv. Syst. 54:215-224, 1995.Google Scholar
  20. 20.
    Lanir, Y. Biaxial stress-relaxation in skin. Ann. Biomed. Eng. 4:250-270, 1976.Google Scholar
  21. 21.
    Lee, M. C., LeWinter, G. Freeman, R. Shabetai, and Y. C. Fung. Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Am.J.Physiol. 249:H222-H230, 1985.Google Scholar
  22. 22.
    Mure, P. Y., M. Galdo, and N. Compagnone. Bladder function after incomplete spinal cord injury in mice: Quantifiable outcomes associated with bladder function and efficiency of dehydroepiandrosterone as a therapeutic adjunct. J. Neurosurg. 100:56-61, 2004.Google Scholar
  23. 23.
    Myers, B. S., J. H. McElhaney, and B. J. Doherty. The viscoelastic responses of the human cervical spine in torsion: Experimental limitations of quasi-linear theory, and a method for reducing these effects. J. Biomech. 24:811-817, 1991.Google Scholar
  24. 24.
    Nagatomi, J., M. Chancellor, and M. Sacks. Active biaxial mechanical properties of bladder wall tissue. In: CD-ROM Proceeding of ASME IMECE '03, Washington, DC, 2003.Google Scholar
  25. 25.
    Price, J. M., P. J. Patitucci, and Y. C. Fung. Mechanical properties of resting taenia coli smooth muscle. Am. J. Physiol. 236: C211-C220, 1979.Google Scholar
  26. 26.
    Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elastic. 61:199-246, 2000.Google Scholar
  27. 27.
    Sacks, M. S., P. L. Kronick, and P. R. Buechler. Contribution of intramuscular connective-tissue to the viscoelastic properties of post-rigor bovine muscle. J. Food Sci. 53:19-24, 1988.Google Scholar
  28. 28.
    Salinas, J., M. Virseda, M. P. Fuente, F. Mellado, and A. C. Uson. A study on the viscoelastic properties of the urinary bladder in dogs. Urol Int. 49:185-190, 1992.Google Scholar
  29. 29.
    Uvelius, B., and A. Mattiasson. Collagen content in the rat urinary bladder subjected to infravesical outflow obstruction. J. Urol. 132:587-590, 1984.Google Scholar
  30. 30.
    vanMastrigt, R., B.L.R.A. Coolsaet, and W.A. vanDuyl. First results of stepwise straining of the human urinary bladder and human bladder strips. Invest. Urol. 19:58-61, 1981.Google Scholar
  31. 31.
    Wagg, A., and C. H. Fry. Visco-elastic properties of isolated detrusor smooth muscle. Scand J Urol Nephrol Suppl. 201: 12-18, 1999.Google Scholar
  32. 32.
    Watanabe, T., D. A. Rivas, and M. B. Chancellor. Urodynamics of spinal cord injury. Urol. Clin. North. Am. 23:459-473, 1996.Google Scholar
  33. 33.
    Woo, S. L. Y., G. A. Johnson, and B. A. Smith. Mathematical modeling of ligaments and tendons. J. Biomech. Eng. 115: 468-473, 1993.Google Scholar
  34. 34.
    Yoshiyama, M., F. M. Nezu, O. Yokoyama, W. C. de Groat, and M. B. Chancellor. Changes in micturition after spinal cord injury in conscious rats. Urology 54:929-933, 1999.Google Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Jiro Nagatomi
    • 1
    • 2
  • D. Claire Gloeckner
    • 1
  • Michael B. Chancellor
    • 2
    • 3
  • William C. deGroat
    • 4
  • Michael S. Sacks
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghPennsylvania
  2. 2.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvania
  3. 3.Department of UrologyUniversity of PittsburghPittsburghPennsylvania
  4. 4.Department of PharmacologyUniversity of PittsburghPittsburghPennsylvania

Personalised recommendations