Annals of Biomedical Engineering

, Volume 32, Issue 8, pp 1039–1049

Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves

  • Daniel K. Hildebrand
  • Zhongjun J. Wu
  • John E. MayerJr.
  • Michael S. Sacks
Article

Abstract

Biologically active heart valves (tissue engineered and recellularized tissue-derived heart valves) have the potential to offer enhanced function when compared to current replacement value therapies since they can possibly remodel, and grow to meet the needs of the patient, and not require chronic medication. However, this technology is still in its infancy and many fundamental questions remain as to how these valves will function in vivo. It has been shown that exposing biologically active tissue constructs to pulsatile pressures and flows during in vitro culture produces enhanced extracellular matrix protein expression and cellularity, although the ideal hydrodynamic conditioning regime is as yet unknown. Moreover, in vitro organ-level studies of living heart valves aimed at studying the remodeling processes require environments that can accurately reproduce in vivo hemodynamics under sterile conditions. To this end, we have developed a system to study the effects of subjecting biologically active heart valves to highly controlled pulsatile pressure and flow waveforms under sterile conditions. The device fits inside a standard incubator and utilizes a computer-controlled closed loop feedback system to provide a high degree of control. The mean pressure, mean flow rate, driving frequency, and shape of the pulsatile pressure waveform can be changed automatically in order to simulate both physiologic and nonphysiologic hemodynamic conditions. Extensive testing and evaluation demonstrated the device's ability to subject a biologically active heart valve to highly controlled pulsatile waveforms that can be modulated during the course of sterile incubation.

Tissue engineering Heart valves Bioreactor Mock loop Pulse duplicator Cardiovascular Windkessel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Brant, A. M., J. F. Chmielewski, T. K. Hung, and H. S. Borovetz. Simulation in vitroof pulsatile vascular hemodynamics using a CAD/CAM-designed cam disc and roller follower. Artif.Organs 10:419–421, 1986.Google Scholar
  2. 2.
    Chakravarti, L. R., Handbook of Methods of Applied Statistics. New York: Wiley, 1967.Google Scholar
  3. 3.
    Donovan, F. M., Jr. Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater. Med. Devices Artif. Organs 3:439–449, 1975.Google Scholar
  4. 4.
    D'Souza, S. S., M. Butterfield, and J. Fisher. Kinematics of synthetic flexible leaflet heart valves during accelerated testing. J. Heart Valve Dis. 12:110–119, 2003 (Discussion 9-20).Google Scholar
  5. 5.
    Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, W. Flameng, and P. R. Verdonck. Design of a Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor 1049 new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Organs 26:710–714, 2002.CrossRefGoogle Scholar
  6. 6.
    FDA. Replacement Heart Valve Guidance. Rockville, MD: United States Food and Drug Administration, 1994.Google Scholar
  7. 7.
    Ferrari, G., C. De Lazzari, R. Mimmo, D. Ambrosi, and G. Tosti. Mock circulatory system for in vitroreproduction of the left ventricle, the arterial tree and their interaction with a left ventricular assist device. J. Med. Eng. Technol. 18:87–95, 1994.Google Scholar
  8. 8.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102:III44-III49, 2000.Google Scholar
  9. 9.
    Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer, Jr. New pulsatile bioreactor for in vitroformation of tissue engineered heart valves. Tissue Eng. 6:75–79, 2000.CrossRefGoogle Scholar
  10. 10.
    Hoerstrup, S. P., G. Zund, R. Sodian, A. M. Schnell, J. Grunenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20:164–169, 2001.CrossRefGoogle Scholar
  11. 11.
    Jensen, M. O., J. D. Lemmon, V. C. Gessaghi, C. P. Conrad, R. A. Levine, and A. P. Yoganathan. Harvested porcine mitral xenograft fixation: Impact on fluid dynamic performance.J. Heart Valve Dis. 10:111–124, 2001.Google Scholar
  12. 12.
    Jin, W., and C. Clark. Experimental investigation of the motions of the pumping diaphragm within a sac-type pneumatically driven ventricular assist device. J. Biomech. 27:43–55, 1994.CrossRefGoogle Scholar
  13. 13.
    Jin, W., and C. Clark. Pressure development within a sactype pneumatically driven ventricular assist device. J. Biomech.27: 1319–1329, 1994.CrossRefGoogle Scholar
  14. 14.
    Kitamura, T., K. Affeld, and A. Mohnhaupt. Design of a new pulse duplicator system for prosthetic heart valves. J. Biomech. Eng. 109:43–47, 1987.Google Scholar
  15. 15.
    Knierbein, B., H. Reul, R. Eilers, M. Lange, R. Kaufmann, and G. Rau. Compact mock loops of the systemic and pulmonary circulation for blood pump testing. Int. J. Artif. Organs 15:40–48, 1992.Google Scholar
  16. 16.
    Reul, H., M. Giersiepen, and E. Knott. Laboratory testing of prosthetic heart valves. Eng. Med. 16:67–76, 1987.Google Scholar
  17. 17.
    Reul, H., M. Giersiepen, and E. Knott. In vitrotesting of bioprostheses. ASAIO Trans. 34: 1033–1039, 1988.Google Scholar
  18. 18.
    Reul, H., and K. Potthast. Durability/wear testing of heart valve substitutes. J. Heart Valve Dis. 7:151–157, 1998.Google Scholar
  19. 19.
    Ross, D. N. Aortic root replacement with a pulmonary autograft-current trends. J. Heart Valve Dis. 3:358–360, 1994.Google Scholar
  20. 20.
    Schichl, K., and K. Affeld.Acomputer controlled versatile pulse duplicator for precision testing of artificial heart valves. Int. J. Artif. Organs 16:722–728, 1993.Google Scholar
  21. 21.
    Schoen, F., and R. Levy. Tissue heart valves: Current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.CrossRefGoogle Scholar
  22. 22.
    Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, J. E. Mayer, Jr. Tissue engineering heart valves: Valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.CrossRefGoogle Scholar
  23. 23.
    Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering of heart valves: In vitroexperiences. Ann. Thorac. Surg. 70:140–144, 2000.CrossRefGoogle Scholar
  24. 24.
    Sodian, R., T. Lemke, C. Fritsche, S. P. Hoerstrup, P. Fu, E. V. Potapov, H. Hausmann, and R. Hetzer. Tissue-engineering bioreactors: A new combined cell-seeding and perfusion system for vascular tissue engineering. Tissue Eng. 8:863–870, 2002.CrossRefGoogle Scholar
  25. 25.
    Sodian, R., T. Lemke, M. Loebe, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, R. Meyer, and R. Hetzer.Newpulsatile bioreactor for fabrication of tissue-engineered patches. J. Biomed. Mater. Res. 58:401–405, 2001.CrossRefGoogle Scholar
  26. 26.
    Stock, U. A., J. P. Vacanti, J. E. Mayer, Jr., and T.Wahlers. Tissue engineering of heart valves-current aspects. Thorac. Cardiovasc. Surg. 50:184–193, 2002.CrossRefGoogle Scholar
  27. 27.
    Vandenberghe, S., P. Segers, B. Meyns, and P. Verdonck. Hydrodynamic characterisation of ventricular assist devices. Int. J. Artif. Organs 24:470–477, 2001.Google Scholar
  28. 28.
    Verdonck, P., A. Kleven, R. Verhoeven, B. Angelsen, and J. Vandenbogaerde. Computer-controlled in vitromodel of the human left heart. Med. Biol. Eng. Comput. 30:656–659, 1992.Google Scholar
  29. 29.
    Villavicencio, R. E., R. A. Humes, M. L. Epstein, H. L. Walters, 3rd, M. Hakimi, R. L. Thomas, and M.V. Tantengco. Abrupt aortic root dilation after the Ross procedure-Is this a progressive phenomenon? J. Card. Surg. 18: 384–389, 2003.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2004

Authors and Affiliations

  • Daniel K. Hildebrand
    • 1
    • 2
  • Zhongjun J. Wu
    • 1
    • 2
  • John E. MayerJr.
    • 3
  • Michael S. Sacks
    • 1
    • 1
  1. 1.Department of Bioengineering, University of PittsburghEngineered Tissue Mechanics LaboratoryPittsburghPA
  2. 2.McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghPA
  3. 3.Department of Cardiovascular Surgery, Children's Hospital Boston, Harvard Medical SchoolBostonMA

Personalised recommendations