Skip to main content
Log in

Estimation of Blood Flow Heterogeneity in Human Skeletal Muscle Using Intravascular Tracer Data: Importance for Modeling Transcapillary Exchange

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Distributed models of blood-tissue exchange are widely used to measure kinetic events of various solutes from multiple tracer dilution experiments. Their use requires, however, a careful description of blood flow heterogeneity along the capillary bed. Since they have mostly been applied in animal studies, direct measurement of the heterogeneity distribution was possible, e.g., with the invasive microsphere method. Here we apply distributed modeling to a dual tracer experiment in humans, performed using an intravascular (indocyanine green dye, subject to distribution along the vascular tree and confined to the capillary bed) and an extracellular ([3H]-D-mannitol, tracing passive transcapillary transfer across the capillary membrane in the interstitial fluid) tracer. The goal is to measure relevant parameters of transcapillary exchange in human skeletal muscle. We show that assuming an accurate description of blood flow heterogeneity is crucial for modeling, and in particular that assuming for skeletal muscle the well-studied cardiac muscle blood flow heterogeneity is inappropriate. The same reason prevents the use of the common method of estimating the input function of the distributed model via deconvolution, which assumes a known blood flow heterogeneity, either defined from literature or measured, when possible. We present a novel approach for the estimation of blood flow heterogeneity in each individual from the intravascular tracer data. When this newly estimated blood flow heterogeneity is used, a more satisfactory model fit is obtained and it is possible to reliably measure parameters of capillary membrane permeability-surface product and interstitial fluid volume describing transcapillary transfer in vivo. © 1998 Biomedical Engineering Society.

PAC98: 8745Ft, 8710+e, 8722Fy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bassingthwaighte, J. B., W. A. Dobbs, and T. Ypintsoi. Heterogeneity of myocardial blood flow. In: Myocardial Blood Flow in Man: Methods and Significance in Coronary Disease, edited by A. Maseri. Torino, Italy: Minerva Medica, 1972, pp. 197-205.

    Google Scholar 

  2. Bassingthwaighte, J. B., and M. Levin. Analysis of coronary outflow dilution curves for the estimation of cellular uptake rates in the presence of heterogeneous regional flows. Basic Res. Cardiol.76:404-410, 1981.

    Google Scholar 

  3. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: American Physiological Society, 1984, Sec. 2, Vol. IV, pp. 549-626.

    Google Scholar 

  4. Bassingthwaighte, J. B., C. Y. Wang, and I. S. Chan. Bloodtissue exchange via transport and transformation by capillary endothelial cells. Circ. Res.65:1-24, 1989.

    Google Scholar 

  5. Bassingthwaighte, J. B., I. S. Chan, and C. Y. Wang. Computationally efficient algorithms for convection-permeationdiffusion models for blood-tissue exchange. Ann. Biomed. Eng.20:687-725, 1992.

    Google Scholar 

  6. Bronikowski, T. A., C. A. Dawson, and J. H. Linehan. Model-free deconvolution techniques for estimating vascular transport functions. Int. J. Bio-Med. Comput.14:411-429, 1983.

    Google Scholar 

  7. Carson, E. R., C. Cobelli, and L. Finkelstein. The Mathematical Modelling of Metabolic and Endocrine Systems. New York: Wiley, 1983.

    Google Scholar 

  8. Chan, I. S., J. B. Bassingthwaighte, and A. A. Goldstein. SENSOP: a derivative free solver for nonlinear least squares with sensitivity scaling. Ann. Biomed. Eng.21:621-631, 1993.

    Google Scholar 

  9. Cobelli, C., M. P. Saccomani, E. Ferrannini, R. A. DeFronzo, R. Gelfand, and R. Bonadonna. A compartmental model to quantitate in vivoglucose transport in the human forearm. Am. J. Physiol.257:E943-E958, 1989.

    Google Scholar 

  10. Gonzalez, F., and J. B. Bassingthwaighte. Heterogeneities in regional volume of distribution and flows in rabbit heart. Am. J. Physiol.258:H1012-H1024, 1990.

    Google Scholar 

  11. Goresky, C. A., and M. Silverman. Effect of correction of catheter distortion on calculated sinusoidal volumes. Am. J. Physiol.207:883-892, 1964.

    Google Scholar 

  12. Iversen, P. O., and G. Nicolaysen. Local blood flow and glucose uptake within resting and exercising rabbit skeletal muscle. Am. J. Physiol.260:H1795-H1801, 1991.

    Google Scholar 

  13. Iversen, P. O., and G. Nicolaysen. Heterogeneous blood flow distribution within single skeletal muscles in the rabbit: Role of vasomotion, sympathetic nerve activity and effect of vasodilation. Acta Physiol. Scand.137:125-133, 1989.

    Google Scholar 

  14. Iversen, P. O., M. Standa, and G. Nicolaysen. Marked regional heterogeneity in blood flow within a single skeletal muscle at rest and during exercise hyperaemia in the rabbit. Acta Physiol. Scand.136:17-28, 1989.

    Google Scholar 

  15. Jacquez, J. Compartmental Analysis in Biology and Medicine, 3rd ed. Ann Arbor, MI: Bio Medware, 1996.

    Google Scholar 

  16. Kelley, D. E., M. A. Mintun, S. C. Watkins, J.-A. Simoneau, F. Jadali, A. Fredrickson, J. Beattie, and R. Thériault. The effect of non-insulin dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J. Clin. Invest.97:2705-2713, 1996.

    Google Scholar 

  17. King, R. B., A. Deussen, G. M. Raymond, and J. B. Bassingthwaighte. A vascular transport operator. Am. J. Physiol.265:H2196-H2208, 1993.

    Google Scholar 

  18. King, R. B., G. M. Raymond, and J. B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Eng.24:352-372, 1996.

    Google Scholar 

  19. Knopp, T. J., W. A. Dobbs, J. F. Greenleaf, and J. B. Bassingthwaighte. Transcoronary intravascular transport functions obtained via a stable deconvolution technique. Ann. Biomed. Eng.4:44-59, 1976.

    Google Scholar 

  20. Kroll, K., A. Deussen, and I. R. Sweet. Comprehensive model of transport and metabolism of adenosine and Sadenosylhomocysteine in the guinea pig heart. Circ. Res.71:590-604, 1992.

    Google Scholar 

  21. Lilloja, S., A. A. Young, C. L. Culter, J. L. Ivy, W. G. H. Abbott, J. K. Zawadzki, H. Yki-Järvinen, L. Christin, T. W. Secomb, and C. Bogardus. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J. Clin. Invest.80:415-424, 1987.

    Google Scholar 

  22. National Simulation Resource Facility. MMID4 User's Guide. Center for Bioengineering, University of Washington, 1994.

  23. National Simulation Resource Facility. SIMCON User's Guide. Center for Bioengineering, University of Washington, 1995.

  24. Pendergast, D. R., J. A. Krasney, A. Ellis, B. McDonald, C. Marconi, and P. Cerretelli. Cardiac output and muscle blood flow in exercising dogs. Respir. Physiol.61:317-326, 1985.

    Google Scholar 

  25. Piiper, J., D. R. Pendergast, C. Marconi, M. Meyer, N. Heisler, and P. Cerretelli. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. Am. J. Physiol.58:2068-2074, 1985.

    Google Scholar 

  26. Rose, C. P., and C. A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ. Res.39:541-554, 1976.

    Google Scholar 

  27. Saccomani, M. P., R. C. Bonadonna, D. M. Bier, R. A. DeFronzo, and C. Cobelli. A model to measure insulin effects on glucose transport and phosphorylation in muscle: A three-tracer study. Am. J. Physiol.270:E170-E185, 1996.

    Google Scholar 

  28. Sokoloff, L., M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem.28:897-916, 1977.

    Google Scholar 

  29. Sparacino, G., P. Vicini, R. Bonadonna, P. Marraccini, M. Lehtovirta, E. Ferrannini, and C. Cobelli. Removal of catheter distortion in multiple indicator dilution studies: A deconvolution-based method and case studies on glucose blood-tissue exchange. Med. Biol. Eng. Comput.35:337-342, 1997.

    Google Scholar 

  30. Utriainen, T., P. Nuutila, T. Takala, P. Vicini, U. Ruotsalainen, T. Rönnemaa, T. Tolvanen, M. Raitakari, M. Haaparanta, O. Kirvelä, C. Cobelli, and H. Yki-Järvinen. Intact insulin stimulation of skeletal muscle blood flow, its heterogeneity and redistribution but not of glucose uptake in noninsulin dependent diabetes mellitus. J. Clin. Invest.100:777- 785, 1997.

    Google Scholar 

  31. Vicini, P., S. Pasinato, M. P. Saccomani, R. Bonadonna, and C. Cobelli. A multi-region distributed model of glucose kinetics in the human myocardium. In: Modeling and Control in Biomedical Systems, edited by B. W. Patterson. Madison, WI: Omnipress, 1994, pp. 229-230.

    Google Scholar 

  32. Vicini, P., and C. Cobelli. Parameter estimation in distributed models of blood-tissue exchange: a Monte Carlo strategy to assess precision. Ann. Biomed. Eng.25:815-821, 1997.

    Google Scholar 

  33. Vicini, P., R. C. Bonadonna, T. Utriainen, P. Nuutila, M. Raitakari, H. Yki-Järvinen, and C. Cobelli. Estimation of blood flow heterogeneity distribution in human skeletal muscle from positron emission tomography. Ann. Biomed. Eng.25:906-910, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicini, P., Bonadonna, R.C., Lehtovirta, M. et al. Estimation of Blood Flow Heterogeneity in Human Skeletal Muscle Using Intravascular Tracer Data: Importance for Modeling Transcapillary Exchange. Annals of Biomedical Engineering 26, 764–774 (1998). https://doi.org/10.1114/1.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.64

Navigation