Advertisement

Annals of Biomedical Engineering

, Volume 26, Issue 1, pp 166–178

# A Mathematical Model of Gas Exchange in an Intravenous Membrane Oxygenator

• Todd J. Hewitt
• Brack G. Hattler
• William J. Federspiel
Article

## Abstract

Acute respiratory distress syndrome (ARDS) is a pulmonary edemic condition which reduces respiratory exchange in 150,000 people per year in the United States. The currently available therapies of mechanical ventilation and extracorporeal membrane oxygenation are associated with high mortality rates, so intravenous oxygenation represents an attractive, alternative support modality. We are developing an intravenous membrane oxygenator (IMO) device intended to provide 50% of basal oxygen and carbon dioxide exchange requirements for ARDS patients. A unique aspect of the IMO is its use of an integral balloon to provide active mixing. This paper describes a mathematical model which was developed to quantify and optimize the gas exchange performance of the IMO. The model focuses on balloon activated mixing, uses a lumped compartment approach, and approximates the blood-side mass transfer coefficients with cross-flow correlations. IMO gas exchange was simulated in water and blood, for a variety of device geometries and balloon pulsation rates. The modeling predicts the following: (1) gas exchange efficiency is reduced by a buildup of oxygen in the fluid near the fibers; (2) the IMO gas exchange rate in blood is normally about twice that in water under comparable conditions; (3) a balloon diameter of about 1.5 cm leads to optimal gas exchange performance; and (4) in vivo positioning can affect gas exchange rates. The numerically predicted gas transfer rates correlate closely with those experimentally measured in vitro for current IMO prototypes. © 1998 Biomedical Engineering Society.

PAC98: 8710+e, 8790+y, 8265Fr

ARDS Intravenous oxygenation Artificial lung Mathematical model Model Gas exchange Oxygenator

## Preview

Unable to display preview. Download preview PDF.

## REFERENCES

1. 1.
Ahmed, T., and M. J. Semmens. Use of transverse flow hollow fibers for bubbleless membrane aeration. Water Res.30:440-446, 1996.Google Scholar
2. 2.
Conrad, S. A., et al.Major findings from the clinical trials of the intravascular oxygenator. Artif. Organs18:846-863, 1994.Google Scholar
3. 3.
Fazzalari, F. L., R. H. Bartlett, M. R. Bonnell, and J. P. Montoya. An intrapleural lung prosthesis: Rationale, design, and testing. Artif. Organs18:801-805, 1994.Google Scholar
4. 4.
4 Federspiel, W. J., T., Hewitt, M. S. Hout, F. R. Walters, L. W. Lund, P. I. Sawzik, G. Reeder, H. S. Borovetz, and B. G. Hattler. Recent progress in engineering the Pittsburgh intravenous membrane oxygenator. ASAIO J.42:M435-M442, 1996.Google Scholar
5. 5.
Fujii, Y., and S. Kigoshi. Characterization of hollow fiber membranes. J. Chem. En. J.27:321-328, 1994.Google Scholar
6. 6.
Gattinoni, L., A. Pesenti, and G. P. Rossi. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet2:292- 294, 1980.Google Scholar
7. 7.
Ichiba, S., and R. H. Bartlett. Current status of extracorporeal membrane oxygenation for severe respiratory failure. Artif. Organs20:120-123, 1996.Google Scholar
8. 8.
Incropera, F. P., and D. P. DeWitt. Introduction to Heat Transfer. New York: Wiley, 1990.Google Scholar
9. 9.
Lund, L. W. Evaluation of flow visualization methods as a design tool for artificial lung development. Carnegie Mellon University, Masters thesis, 1992.Google Scholar
10. 10.
Macha, M., W. J., Federspiel, L. W. Lund, P. J. Sawzik, P. Litwak, F. P. Walters, G. D. Reeder, H. S. Borovetz, and B. G. Hattler. Acute in vivostudies of the Pittsburgh intravenous membrane oxygenator. ASAIO J.42:M609-M615, 1996.Google Scholar
11. 11.
Makarewicz, A. J. Static and dynamic artificial lungs. Ph.D. thesis, Northwestern University, 1994.Google Scholar
12. 12.
Mockros, L. F., and R. Leonard. Compact cross-flow tubular oxygenators. Trans. Am. Soc. Artif. Intern. Organs31:628- 632, 1985.Google Scholar
13. 13.
Mortensen, J. D. Intravascular oxygenator: A new alternative method for augmenting blood gas transfer in patients with acute respiratory failure. Artif. Organs16:75-82, 1992.Google Scholar
14. 14.
Niranjan, S. C., J. W. Clark, K. Y. San, J. B. Zwischenberger, and A. Bidani. Analysis of factors affecting gas exchange in intravascular blood gas exchanger. J. Appl. Physiol.77:1716-1730, 1994.Google Scholar
15. 15.
Pesenti, A., L. Gattinoni, T. Kobolow, and G. Damia. Extracorporeal circulation in adult respiratory failure. ASAIO Trans.34:43-47, 1988.Google Scholar
16. 16.
Snider, M. T., D. B. Campbell, W. A. Kofke, K. M. High, G. B. Russell, M. F. Keamy, and D. R. Williams. Venovenous perfusion of adult and children with severe acute respiratory distress syndrome. ASAIO Trans.34:1014-1020, 1988.Google Scholar
17. 17.
Vaslef, S. N., K. E. Cook, R. J. Leonard, L. F. Mockros, and R. W. Anderson. Design and evaluation of a new, low pressure loss, implantable artificial lung. ASAIO J.40:M522- M526, 1994.Google Scholar
18. 18.
Vaslef, S. N., R. W. Anderson, and R. J. Leonard. Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators. ASAIO J.40:990-996, 1994.Google Scholar
19. 19.
Weinberger, S. E. Principles of Pulmonary Medicine. Philadelphia: Saunders, 1992.Google Scholar
20. 20.
Wickramasinghe, S. R., M. J. Semmens, and E. L. Cussler. Mass transfer in various hollow fiber geometries. J. Membr. Sci.69:235-250, 1992.Google Scholar
21. 21.
Yang, M. C., and E. L. Cussler. Designing hollow fiber contactors. AIChE. J.32:1910-1916 1986.Google Scholar

## Copyright information

© Biomedical Engineering Society 1998

## Authors and Affiliations

• Todd J. Hewitt
• 1
• Brack G. Hattler
• 2
• William J. Federspiel
• 1
• 2
• 3
1. 1.Bioengineering ProgramUniversity of PittsburghPittsburgh
2. 2.Artificial Lung Program, Department of SurgeryUniversity of PittsburghPittsburgh
3. 3.Department of Chemical EngineeringUniversity of PittsburghPittsburgh